Table of Contents
Journal of Amino Acids
Volume 2014 (2014), Article ID 434056, 10 pages
http://dx.doi.org/10.1155/2014/434056
Research Article

Low-Vacuum Deposition of Glutamic Acid and Pyroglutamic Acid: A Facile Methodology for Depositing Organic Materials beyond Amino Acids

1School of Computer Science, Tokyo University of Technology, Katakura, Hachioji, Tokyo 192-0982, Japan
2Graduate School of Bionics, Tokyo University of Technology, Katakura, Hachioji, Tokyo 192-0982, Japan
3Shiseido Co., Ltd., Higashi-shimbashi, Minato-ku, Tokyo 105-8310, Japan
4Bionanotechnology Center, Tokyo University of Technology, Katakura, Hachioji, Tokyo 192-0982, Japan
5Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan

Received 30 May 2014; Revised 14 July 2014; Accepted 24 July 2014; Published 1 September 2014

Academic Editor: Sambasivarao Kotha

Copyright © 2014 Iwao Sugimoto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Beck, T. O. Nyster, G. G. Enstad, D. Malthe-Sørenssen, and J.-P. Andreassen, “Influence of crystal properties on powder flow behavior of an aromatic amine and l-glutamic acid,” Particulate Science and Technology, vol. 28, no. 2, pp. 146–160, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. T. L. Threlfall, “Analysis of organic polymorphs: a review,” Analyst, vol. 120, no. 10, pp. 2435–2460, 1995. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Hirayama, K. Shirahata, Y. Ohashi, and Y. Sasada, “Structure of α form of L-glutamic acid. α-β Transition,” Bulletin of the Chemical Society of Japan, vol. 53, pp. 30–35, 1980. View at Google Scholar
  4. N. Garti and H. Zour, “The effect of surfactants on the crystallization and polymorphic transformation of glutamic acid,” Journal of Crystal Growth, vol. 172, no. 3-4, pp. 486–498, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Dharmayat, J. C. de Anda, R. B. Hammond, X. Lai, K. J. Roberts, and X. Z. Wang, “Polymorphic transformation of l-glutamic acid monitored using combined on-line video microscopy and X-ray diffraction,” Journal of Crystal Growth, vol. 294, no. 1, pp. 35–40, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. Z. Liu and C. Li, “Solvent-free crystallizations of amino acids: the effects of the hydrophilicity/hydrophobicity of side-chains,” Biophysical Chemistry, vol. 138, no. 3, pp. 115–119, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Kitamura, “Polymorphism in the crystallization of L-glutamic acid,” Journal of Crystal Growth, vol. 96, no. 3, pp. 541–546, 1989. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Wu, N. Reeves-McLaren, S. Jones, R. I. Ristic, J. P. A. Fairclough, and A. R. West, “Phase transformations of glutamic acid and its decomposition products,” Crystal Growth and Design, vol. 10, no. 2, pp. 988–994, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. C. E. Fouche Jr. and D. L. Rohlfing, “Thermal polymerization of amino acids under various atmospheres or at low pressures,” BioSystems, vol. 8, no. 2, pp. 57–65, 1976. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Harada and S. W. Fox, “The thermal condensation of glutamic acid and glycine to linear peptides,” Journal of the American Chemical Society, vol. 80, no. 11, pp. 2694–2697, 1958. View at Publisher · View at Google Scholar · View at Scopus
  11. S. W. Fox and K. Harada, “The thermal copolymerization of amino acids common to protein,” Journal of the American Chemical Society, vol. 82, no. 14, pp. 3745–3751, 1960. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Natarajan, G. Shanmugam, and S. A. M. B. Dhas, “Growth and characterization of a new semi organic NLO material: L-tyrosine hydrochloride,” Crystal Research and Technology, vol. 43, no. 5, pp. 561–564, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. K. E. Rieckhoff and W. L. Peticolas, “Optical second-harmonic generation in crystalline amino acids,” Science, vol. 147, no. 3658, pp. 610–611, 1965. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Moritake, S. Taira, T. Hatanaka, M. Setou, and Y. Ichiyanagi, “Preparation of amino acid conjugated nano-magnetic particles for delivery systems,” e-Journal of Surface Science and Nanotechnology, vol. 5, pp. 60–66, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. J.-I. Takahashi, H. Shinojima, M. Seyama et al., “Chirality emergence in thin solid films of amino acids by polarized light from synchrotron radiation and free electron laser,” International Journal of Molecular Sciences, vol. 10, no. 7, pp. 3044–3064, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Sugimoto, T. Matsumoto, H. Shimizu, R. Munakata, M. Seyama, and J.-I. Takahashi, “The structures and gas-sorption properties of l-tyrosine films prepared by the Knudsen effusion method,” Thin Solid Films, vol. 517, no. 13, pp. 3817–3823, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Gross and G. Grodsky, “On the sublimation of amino acids and peptides,” Journal of the American Chemical Society, vol. 77, no. 6, pp. 1678–1680, 1955. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Douda and V. A. Basiuk, “Pyrolysis of amino acids: recovery of starting materials and yields of condensation products,” Journal of Analytical and Applied Pyrolysis, vol. 56, no. 1, pp. 113–121, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. B. Schade and J.-H. Fuhrhop, “Amino acid networks,” New Journal of Chemistry, vol. 22, no. 2, pp. 97–104, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. I. Sugimoto, A. Nagai, and M. Okamoto, “Simple low-vacuum coating of paraffin wax on carbonaceous gas sensing layers,” Vacuum, vol. 86, no. 12, pp. 1905–1910, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. I. Sugimoto, K. Mitsui, M. Nakamura, and M. Seyama, “Effects of surface water on gas sorption capacities of gravimetric sensing layers analyzed by molecular descriptors of organic adsorbates,” Analytical and Bioanalytical Chemistry, vol. 399, no. 5, pp. 1891–1899, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. O. Wolff, E. Seydel, and D. Johannsmann, “Viscoelastic properties of thin films studied with quartz crystal resonators,” Faraday Discussions, vol. 107, pp. 91–104, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Behllng, R. Lucklum, and P. Hauptmann, “The non-gravimetric quartz crystal resonator response and its application for determination of polymer shear modulus,” Measurement Science and Technology, vol. 9, no. 11, pp. 1886–1893, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. https://www.umsl.edu/~chickosj/c365/nmr5.pdf.
  25. http://www.ymdb.ca/compounds/YMDB00107.
  26. R. S. Nunes and É. T. G. Cavalheiro, “Thermal behavior of glutamic acid and its sodium, lithium and ammonium salts,” Journal of Thermal Analysis and Calorimetry, vol. 87, no. 3, pp. 627–630, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Wu, N. Reeves-McLaren, J. Pokorny, J. Yarwood, and A. R. West, “Polymorphism, phase transitions, and thermal stability of L-pyroglutamic acid,” Crystal Growth and Design, vol. 10, no. 7, pp. 3141–3148, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Wu and A. R. West, “Thermally-induced homogeneous racemization, polymorphism, and crystallization of pyroglutamic acid,” Crystal Growth and Design, vol. 11, no. 8, pp. 3366–3374, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. V. M. Mecea, “Loaded vibrating quartz sensors,” Sensors and Actuators A: Physical, vol. 40, no. 1, pp. 1–27, 1994. View at Publisher · View at Google Scholar · View at Scopus
  30. K. K. Kanazawa, “Mechanical behaviour of films on the quartz microbalance,” Faraday Discussions, vol. 107, pp. 77–90, 1997. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Janshoff, H.-J. Galla, and C. Steinem, “Piezoelectric mass-sensing devices as biosensors—an alternative to optical biosensors?” Angewandte Chemie International Edition, vol. 39, no. 22, pp. 4004–4032, 2000. View at Google Scholar