Table of Contents
Journal of Amino Acids
Volume 2014 (2014), Article ID 672367, 10 pages
http://dx.doi.org/10.1155/2014/672367
Research Article

Lauryl-poly-L-lysine: A New Antimicrobial Agent?

1Institut pour le Développement de la Recherche en Pathologie Humaine et Thérapeutique (IDRPHT), 33400 Talence, France
2Laboratoire Biogam, 33600 Pessac, France
3Laboratory of Neuroanatomy of the Peptidergic Systems (Lab. 14), Institute of Neurosciences of Castilla y León (INCYL), 37007 Salamanca, Spain
4Institut des Sciences Moléculaires (ISM) à ENSCPB, 33600 Pessac, France
5Laboratoire de l’Intégration du Matériau au Système (IMS) à l’Ecole Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB), 33600 Pessac, France
6IDRPHT, 200 Avenue Thouars, 33400 Talence, France

Received 14 October 2013; Accepted 14 January 2014; Published 23 February 2014

Academic Editor: Arthur Cooper

Copyright © 2014 Laetitia Vidal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. H. Trnobranski, “Are we facing a 'post-antibiotic era'?—a review of the literature regarding antimicrobial drug resistance,” Journal of Clinical Nursing, vol. 7, no. 5, pp. 392–400, 1998. View at Google Scholar · View at Scopus
  2. C.-I. Liu, G. Y. Liu, Y. Song et al., “A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence,” Science, vol. 319, no. 5868, pp. 1391–1394, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Kitahara, N. Koyama, J. Matsuda et al., “Antimicrobial activity of saturated fatty acids and fatty amines against methicillin-resistant Staphylococcus aureus,” Biological and Pharmaceutical Bulletin, vol. 27, no. 9, pp. 1321–1326, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. A. F. Chu-Kung, K. N. Bozzelli, N. A. Lockwood, J. R. Haseman, K. H. Mayo, and M. V. Tirrell, “Promotion of peptide antimicrobial activity by fatty acid conjugation,” Bioconjugate Chemistry, vol. 15, no. 3, pp. 530–535, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. U. Pag, M. Oedenkoven, N. Papo, Z. Oren, Y. Shai, and H.-G. Sahl, “In vitro activity and mode of action of diastereomeric antimicrobial peptides against bacterial clinical isolates,” Journal of Antimicrobial Chemotherapy, vol. 53, no. 2, pp. 230–239, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. R. E. W. Hancock and H.-G. Sahl, “Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies,” Nature Biotechnology, vol. 24, no. 12, pp. 1551–1557, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. I.-L. Shih, Y.-T. Van, and M.-H. Shen, “Biomedical applications of chemically and microbiologically synthesized poly(glutamic acid) and poly(lysine),” Mini-Reviews in Medicinal Chemistry, vol. 4, no. 2, pp. 179–188, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Kichler, B. Bechinger, and O. Danos, “Antimicrobial peptides as efficient DNA vectors,” Medecine Sciences, vol. 19, no. 11, pp. 1046–1047, 2003. View at Google Scholar · View at Scopus
  9. H. J. P. Ryser and W. C. Shen, “Conjugation of methotrexate to poly(L-lysine) increases drug transport and overcomes drug resistance in cultured cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 75, no. 8, pp. 3867–3870, 1978. View at Google Scholar · View at Scopus
  10. H. J. P. Ryser and W. C. Shen, “Conjugation of methotrexate to poly (L-lysine) as a potential way to overcome drug resistance,” Cancer, vol. 45, no. 5, pp. 1207–1211, 1980. View at Google Scholar · View at Scopus
  11. M. Geffard, L. de Bisschop, S. Duleu, N. Hassaine, A. Mangas, and R. Coveñas, “Endotherapia: a new frontier in the treatment of multiple sclerosis and other chronic diseases,” Discovery Medicine, vol. 10, no. 54, pp. 443–451, 2010. View at Google Scholar · View at Scopus
  12. M. Geffard, L. de Bisschop, S. Duleu et al., “Endotherapia,” Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, vol. 9, no. 3, pp. 197–211, 2010. View at Google Scholar · View at Scopus
  13. A. Mangas, R. Coveñas, D. Bodet, M. P. Dabadie, G. Glaize, and M. Geffard, “Evaluation of the effects of a new drug on brain leukocyte infiltration in an experimental model of autoimmune encephalomyelitis,” Letters in Drug Design and Discovery, vol. 3, no. 3, pp. 138–148, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Mangas, R. Coveñas, D. Bodet, M. de León, S. Duleu, and M. Geffard, “Evaluation of the effects of a new drug candidate (GEMSP) in a chronic EAE model,” International Journal of Biological Sciences, vol. 4, no. 3, pp. 150–160, 2008. View at Google Scholar · View at Scopus
  15. C. Nicaise, J. Coupier, M.-P. Dabadie et al., “Gemals, a new drug candidate, extends lifespan and improves electromyographic parameters in a rat model of amyotrophic lateral sclerosis,” Amyotrophic Lateral Sclerosis, vol. 9, no. 2, pp. 85–90, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. J. Kabara, D. M. Swieczkowski, A. J. Conley, and J. P. Truant, “Fatty acids and derivatives as antimicrobial agents,” Antimicrobial Agents and Chemotherapy, vol. 2, no. 1, pp. 23–28, 1972. View at Google Scholar · View at Scopus
  17. G. Bergsson, J. Arnfinnsson, Ó. Steingrímsson, and H. Thormar, “Killing of Gram-positive cocci by fatty acids and monoglycerides,” APMIS, vol. 109, no. 10, pp. 670–678, 2001. View at Google Scholar · View at Scopus
  18. M. Marounek, E. Skřivanová, and V. Rada, “Susceptibility of Escherichia coli to C2-C18 Fatty Acids,” Folia Microbiologica, vol. 48, no. 6, pp. 731–735, 2003. View at Google Scholar · View at Scopus
  19. M. Geffard, “Use of monofunctional and/or polyfonctionnal derivates of the poly-L-lysine for the preparation of useful drugs in the treatment of the neurodegeneration, contagious, traumatic and toxic neuropathies, degenerative auto immune diseases and proliferative diseases,” Patent registered on the 11/18/1994 under no. 9413861, international extension no. PCTR, 95011517 on the 11/17/1995.
  20. M. Geffard, “Use of conjugated of fatty acids to poly-L-lysine aim to struggle pathogenic microorganisms,” Patent registered on the 07/03/2007 under no. 0753675, international extension no. WO, 2008/122741 on the 10/16/2008.
  21. P. Daverat, M. Geffard, and J.-M. Orgogozo, “Identification and characterization of anti-conjugated azelaic acid antibodies in multiple sclerosis,” Journal of Neuroimmunology, vol. 22, no. 2, pp. 129–134, 1989. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Krimm and J. Bandekar, “Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins,” Advances in Protein Chemistry, vol. 38, pp. 181–364, 1986. View at Publisher · View at Google Scholar · View at Scopus
  23. J.-M. Millot, N. Allam, and M. Manfait, “Study of the secondary structure of proteins in aqueous solutions by attenuated total reflection Fourier transform infrared spectrometry,” Analytica Chimica Acta, vol. 295, no. 3, pp. 233–241, 1994. View at Publisher · View at Google Scholar · View at Scopus
  24. D. A. G. Aranda, R. T. P. Santos, N. C. O. Tapanes, A. L. D. Ramos, and O. A. C. Antunes, “Acid-catalyzed homogeneous esterification reaction for biodiesel production from palm fatty acids,” Catalysis Letters, vol. 122, no. 1-2, pp. 20–25, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Brondz, “Development of fatty acid analysis by high-performance liquid chromatography, gas chromatography, and related techniques,” Analytica Chimica Acta, vol. 465, no. 1-2, pp. 1–37, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Seppänen-Laakso, I. Laakso, and R. Hiltunen, “Analysis of fatty acids by gas chromatography, and its relevance to research on health and nutrition,” Analytica Chimica Acta, vol. 465, no. 1-2, pp. 39–62, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Yamamoto, Y. Hirata, and H. Tanisho, “Cross-linking and insolubilization studies of water-soluble poly(L-ornithine),” International Journal of Biological Macromolecules, vol. 16, no. 2, pp. 81–85, 1994. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Zalipsky, “Chemistry of polyethylene glycol conjugates with biologically active molecules,” Advanced Drug Delivery Reviews, vol. 16, no. 2-3, pp. 157–182, 1995. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Geffard and P. Geffard, “Process for the production of an active molecule vector used to diffuse active substances and vector thus obtained,” Patent no. 0216629 registered on the 12/24/2002.
  30. W. C. Shen and H. J. P. Ryser, “Poly (L-lysine) and poly (D-lysine) conjugates of methotrexate: different inhibitory effect on drug resistant cells,” Molecular Pharmacology, vol. 16, no. 2, pp. 614–622, 1979. View at Google Scholar · View at Scopus
  31. W. C. Shen and H. J.-P. Ryser, “Poly(L-lysine) has different membrane transport and drug-carrier properties when complexed with heparin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 12, pp. 7589–7593, 1981. View at Google Scholar · View at Scopus
  32. X. Bertrand, Y. Costa, and P. Pina, “Surveillance of antimicrobial resistance of bacteria isolated from bloodstream infections: data of the French national observatory for epidemiology of bacterial resistance to antibiotics (ONERBA), 1998–2003,” Medecine et Maladies Infectieuses, vol. 35, no. 6, pp. 329–334, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. O. Dumitrescu, O. Dauwalder, S. Boisset, M.-E. Reverdy, A. Tristan, and F. Vandenesch, “Staphylococcus aureus resistance to antibiotics: key points in 2010,” Medecine Sciences, vol. 26, no. 11, pp. 943–949, 2010. View at Google Scholar · View at Scopus
  34. J. P. Addicks, M. Götting, A. M. Jensen et al., “MRSA—current aspects of resistance, pathology, epidemiology and therapy,” Versicherungsmedizin, vol. 62, no. 4, pp. 183–188, 2010. View at Google Scholar · View at Scopus
  35. B. C. Herold, L. C. Immergluck, M. C. Maranan et al., “Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk,” Journal of the American Medical Association, vol. 279, no. 8, pp. 593–598, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. E. Löwdin, I. Odenholt, and O. Cars, “In vitro studies of pharmacodynamic properties of vancomycin against Staphylococcus aureus and Staphylococcus epidermidis,” Antimicrobial Agents and Chemotherapy, vol. 42, no. 10, pp. 2739–2744, 1998. View at Google Scholar · View at Scopus
  37. C. Aubron, L. Poirel, N. Fortineau, P. Nicolas, L. Collet, and P. Nordmann, “Nosocomial spread of Pseudomonas aeruginosa isolates expressing the metallo-β-lactamase VIM-2 in a hematology unit of a French hospital,” Microbial Drug Resistance, vol. 11, no. 3, pp. 254–259, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Barbier and M. Wolff, “Multi-drug resistant Pseudomonas aeruginosa: towards a therapeutic dead end?” Medecine Sciences, vol. 26, no. 11, pp. 960–968, 2010. View at Google Scholar · View at Scopus
  39. J. Li, J. Turnidge, R. Milne, R. L. Nation, and K. Coulthard, “In vitro pharmacodynamic properties of colistin and colistin methanesulfonate against Pseudomonas aeruginosa isolates from patients with cystic fibrosis,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 3, pp. 781–785, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Nordmann, “Gram-negative bacteriae with resistance to carbapenems,” Medecine Sciences, vol. 26, no. 11, pp. 950–959, 2010. View at Google Scholar · View at Scopus
  41. C. Arpin, C. Quentin, F. Grobost et al., “Nationwide survey of extended-spectrum β-lactamase-producing Enterobacteriaceae in the French community setting,” Journal of Antimicrobial Chemotherapy, vol. 63, no. 6, pp. 1205–1214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. P.-L. Woerther, C. Angebault, M. Lescat et al., “Emergence and dissemination of extended-spectrum β-lactamase-producing Escherichia coli in the community: lessons from the study of a remote and controlled population,” Journal of Infectious Diseases, vol. 202, no. 4, pp. 515–523, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. A. I. Boullerne, K. G. Petry, and M. Geffard, “Circulating antibodies directed against conjugated fatty acids in sera of patients with multiple sclerosis,” Journal of Neuroimmunology, vol. 65, no. 1, pp. 75–81, 1996. View at Publisher · View at Google Scholar · View at Scopus
  44. L. Maneta-Peyret, B. Onteniente, M. Geffard, and C. Cassagne, “Membrane labeling of the cortex of aging rats by anti-fatty acid antibodies,” Neuroscience Letters, vol. 69, no. 2, pp. 121–125, 1986. View at Google Scholar · View at Scopus
  45. Z. Oren, J. C. Lerman, G. H. Gudmundsson, B. Agerberth, and Y. Shai, “Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity,” Biochemical Journal, vol. 341, no. 3, pp. 501–513, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. L. Zhang, A. Rozek, and R. E. W. Hancock, “Interaction of cationic antimicrobial peptides with model membranes,” The Journal of Biological Chemistry, vol. 276, no. 38, pp. 35714–35722, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. I. Geornaras and J. N. Sofos, “Activity of ε-polylysine against Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes,” Journal of Food Science, vol. 70, no. 9, pp. M404–M408, 2005. View at Google Scholar · View at Scopus
  48. M. E. Martin and K. G. Rice, “Peptide-guided gene delivery,” The American Association of Pharmaceutical Scientists Journal, vol. 9, no. 1, pp. E18–E29, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Ali, A. E. R. Hicks, P. G. Hellewell, G. Thoma, and K. E. Norman, “Polymers bearing sLex-mimetics are superior inhibitors of E-selectin-dependent leukocyte rolling in vivo,” The FASEB Journal, vol. 18, no. 1, pp. 152–154, 2004. View at Google Scholar · View at Scopus
  50. A. Ruzin and R. P. Novick, “Equivalence of lauric acid and glycerol monolaurate as inhibitors of signal transduction in Staphylococcus aureus,” Journal of Bacteriology, vol. 182, no. 9, pp. 2668–2671, 2000. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Annamalai, M. K. Mohan Nair, P. Marek et al., “In vitro inactivation of Escherichia coli O157:H7 in bovine rumen fluid by caprylic acid,” Journal of Food Protection, vol. 67, no. 5, pp. 884–888, 2004. View at Google Scholar · View at Scopus
  52. J. Yuan, J. Chen, T. Xue, and Y. Wu, “Studies on caproic acid fermentation using immobilized cells,” Chinese Journal of Biotechnology, vol. 9, no. 2, pp. 123–129, 1993. View at Google Scholar · View at Scopus
  53. J. A. Kelsey, K. W. Bayles, B. Shafii, and M. A. McGuire, “Fatty acids and monoacylglycerols inhibit growth of Staphylococcus aureus,” Lipids, vol. 41, no. 10, pp. 951–961, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. B. W. Petschow, R. P. Batema, and L. L. Ford, “Susceptibility of Helicobacter pylori to bactericidal properties of medium-chain monoglycerides and free fatty acids,” Antimicrobial Agents and Chemotherapy, vol. 40, no. 2, pp. 302–306, 1996. View at Google Scholar · View at Scopus
  55. C. Vasseur, N. Rigaud, M. Hébraud, and J. Labadie, “Combined effects of NaCL, NaOH, and biocides (Monolaurin or Lauric Acid) on inactivation of Listeria monocytogenes and Pseudomonas spp,” Journal of Food Protection, vol. 64, no. 9, pp. 1442–1445, 2001. View at Google Scholar · View at Scopus
  56. K. Yamanaka, C. Maruyama, H. Takagi, and Y. Hamano, “ε-poly-L-lysine dispersity is controlled by a highly unusual nonribosomal peptide synthetase,” Nature Chemical Biology, vol. 4, no. 12, pp. 766–772, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Giangaspero, L. Sandri, and A. Tossi, “Amphipathic α helical antimicrobial peptides,” European Journal of Biochemistry, vol. 268, no. 21, pp. 5589–5600, 2001. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Zasloff, “Antimicrobial peptides of multicellular organisms,” Nature, vol. 415, no. 6870, pp. 389–395, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. R. E. W. Hancock and A. Rozek, “Role of membranes in the activities of antimicrobial cationic peptides,” FEMS Microbiology Letters, vol. 206, no. 2, pp. 143–149, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Majerle, J. Kidrič, and R. Jerala, “Enhancement of antibacterial and lipopolysaccharide binding activities of a human lactoferrin peptide fragment by the addition of acyl chain,” Journal of Antimicrobial Chemotherapy, vol. 51, no. 5, pp. 1159–1165, 2003. View at Publisher · View at Google Scholar · View at Scopus