Table of Contents
Journal of Applied Chemistry
Volume 2013, Article ID 147945, 7 pages
http://dx.doi.org/10.1155/2013/147945
Research Article

Novel Oxidative Desulfurization of a Model Fuel with H2O2 Catalyzed by AlPMo12O40 under Phase Transfer Catalyst-Free Conditions

Chemistry Department, Federal University of Viçosa, Campus Universitário, Avenida PHRolfs, S/N, Viçosa, MG 36570-000, Brazil

Received 26 March 2013; Accepted 3 June 2013

Academic Editor: Stoyan Karakashev

Copyright © 2013 Márcio José da Silva and Lidiane Faria dos Santos. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. US EPA, Regulatory Announcement: Heavy-Duty Engine and Vehicle Standards and Highway Fuel Sulfur Control Requirements, December 2000.
  2. J. T. Sampanthar, H. Xiao, J. Dou, T. Y. Nah, X. Rong, and W. P. Kwan, “A novel oxidative desulfurization process to remove refractory sulfur compounds from diesel fuel,” Applied Catalysis B, vol. 63, no. 1-2, pp. 85–93, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Topsøe, “Developments in operando studies and in situ characterization of heterogeneous catalysts,” Journal of Catalysis, vol. 216, no. 1-2, pp. 155–164, 2003. View at Publisher · View at Google Scholar
  4. S. G. McKinley and R. J. Angelici, “Deep desulfurization by selective adsorption of dibenzothiophenes on Ag+/SBA-15 and Ag+/SiO2,” Chemical Communications, no. 20, pp. 2620–2621, 2003. View at Publisher · View at Google Scholar
  5. R. G. Tailleur, J. Ravigli, S. Quenza, and N. Valencia, “Catalyst for ultra-low sulfur and aromatic diesel,” Applied Catalysis A, vol. 282, no. 1-2, pp. 227–235, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Viveros-García, J. A. Ochoa-Tapia, R. Lobo-Oehmichen, J. A. Reyes-Heredia, and E. S. Pérez-Cisneros, “Conceptual design of a reactive distillation process for ultra-low sulfur diesel production,” Chemical Engineering Journal, vol. 106, no. 2, pp. 119–131, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Yu, P. Xu, Q. Shi, and C. Ma, “Deep desulfurization of diesel oil and crude oils by a newly isolated Rhodococcus erythropolis strain,” Applied and Environmental Microbiology, vol. 72, no. 1, pp. 54–58, 2006. View at Publisher · View at Google Scholar
  8. A. J. Hernandez-Maldonado, F. Yang, G. Qi, and R. T. Yang, “Desulfurization of transportation fuels by π-complexation sorbents: Cu(I)-, Ni(II)-, and Zn(II)-zeolites,” Applied Catalysis B, vol. 56, no. 1-2, pp. 111–126, 2005. View at Publisher · View at Google Scholar
  9. S. Zhang, Q. Zhang, and Z. C. Zhang, “Extractive desulfurization and denitrogenation of fuels using ionic liquids,” Industrial & Engineering Chemistry Research, vol. 43, no. 2, pp. 614–622, 2004. View at Publisher · View at Google Scholar
  10. L. C. Caero, E. Hernández, F. Pedraza, and F. Murrieta, “Oxidative desulfurization of synthetic diesel using supported catalysts: part I. Study of the operation conditions with a vanadium oxide based catalyst,” Catalysis Today, vol. 107-108, pp. 564–569, 2005. View at Publisher · View at Google Scholar
  11. J. M. Campos-Martin, M. C. Capel-Sanchez, and J. L. G. Fierro, “Highly efficient deep desulfurization of fuels by chemical oxidation,” Green Chemistry, vol. 6, no. 11, pp. 557–562, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Li, Z. Jiang, J. Gao et al., “Ultra-deep desulfurization of diesel: oxidation with a recoverable catalyst assembled in emulsion,” Chemistry, vol. 10, no. 9, pp. 2277–2280, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Noyori, M. Aoki, and K. Sato, “Green oxidation with aqueous hydrogen peroxide,” Chemical Communications, no. 16, pp. 1977–1986, 2003. View at Publisher · View at Google Scholar
  14. T. O. Sachdeva and K. K. Pant, “Deep desulfurization of diesel via peroxide oxidation using phosphotungstic acid as phase transfer catalyst,” Fuel Processing Technology, vol. 91, no. 9, pp. 1133–1138, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Al-Shahrani, T. Xiao, S. A. Llewellyn et al., “Desulfurization of diesel via the H2O2 oxidation of aromatic sulfides to sulfones using a tungstate catalyst,” Applied Catalysis B, vol. 73, no. 3-4, pp. 311–316, 2007. View at Publisher · View at Google Scholar
  16. H. Firouzabadi, N. Iranpoor, F. Nowrouzi, and K. Amani, “Aluminium dodecatungstophosphate (AlPW12O40) as a highly efficient catalyst for the selective acetylation of -OH, -SH and -NH2functional groups in the absence of solvent at room temperature,” Chemical Communications, no. 6, pp. 764–765, 2003. View at Google Scholar · View at Scopus
  17. F. Cavani, “Heteropolycompound-based catalysts: a blend of acid and oxidizing properties,” Catalysis Today, vol. 41, no. 1–3, pp. 73–86, 1998. View at Google Scholar · View at Scopus
  18. D. S. Mansilla, M. R. Torviso, E. N. Alesso, P. G. Vazquez, and C. V. Cáceres, “Synthesis and characterization of copper and aluminum salts of H3PMo12O40 for their use as catalysts in the eco-friendly synthesis of chromanes,” Applied Catalysis A, vol. 375, no. 2, pp. 196–204, 2010. View at Publisher · View at Google Scholar
  19. V. Brahmkhatri and A. Patel, “12-Tungstophosphoric acid anchored to SBA-15: an efficient, environmentally benign reusable catalysts for biodiesel production by esterification of free fatty acids,” Applied Catalysis A, vol. 403, no. 1-2, pp. 161–172, 2011. View at Publisher · View at Google Scholar
  20. C. L. Deltcheff, M. Fournier, R. Franck, and R. Thouvenot, “Vibrational investigations of polyoxometalates. 2. Evidence for anion-anion interactions in molybdenum(VI) and tungsten(VI) compounds related to the keggin structure,” Inorganic Chemistry, vol. 22, no. 2, pp. 207–216, 1983. View at Google Scholar · View at Scopus
  21. D. Zhao, H. Ren, J. Wang, Y. Yang, and Y. Zhao, “Kinetics and mechanism of quaternary ammonium salts as phase-transfer catalysts in the liquid−liquid phase for oxidation of thiophene,” Energy & Fuels, vol. 21, no. 5, pp. 2543–2547, 2007. View at Publisher · View at Google Scholar
  22. M. Te, C. Fairbridge, and Z. Ring, “Oxidation reactivities of dibenzothiophenes in polyoxometalate/H2O2 and formic acid/H2O2 systems,” Applied Catalysis A, vol. 219, no. 1-2, pp. 267–280, 2001. View at Publisher · View at Google Scholar
  23. W. Trakarnpruk and K. Rujiraworawut, “Oxidative desulfurization of Gas oil by polyoxometalates catalysts,” Fuel Processing Technology, vol. 90, no. 3, pp. 411–414, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. A. de Angelis, P. Pollesel, D. Molinari et al., “Heteropolyacids as effective catalysts to obtain zero sulfur diesel,” Pure and Applied Chemistry, vol. 79, no. 11, pp. 1887–1894, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. F. M. Collins, A. R. Lucy, and C. Sharp, “Oxidative desulphurisation of oils via hydrogen peroxide and heteropolyanion catalysis,” Journal of Molecular Catalysis A, vol. 117, no. 1–3, pp. 397–403, 1997. View at Publisher · View at Google Scholar
  26. J. L. Garcıa-Gutierrez, G. A. Fuentes, M. E. Hernandez-Teran, P. Garcıa, F. Murrieta-Guevara, and F. Jimenez-Cruz, “Ultra-deep oxidative desulfurization of diesel fuel by the Mo/Al2O3-H2O2 system: the effect of system parameters on catalytic activity,” Applied Catalysis A, vol. 334, no. 1-2, pp. 366–373, 2008. View at Publisher · View at Google Scholar
  27. J. Penzien, C. Haesner, A. Jentys, K. Kohler, T. E. Muller, and J. A. Lercher, “Heterogeneous catalysts for hydroamination reactions: structure-activity relationship,” Journal of Catalysis, vol. 221, no. 2, pp. 302–312, 2004. View at Publisher · View at Google Scholar
  28. K.-I. Tanaka and A. Ozaki, “Acid-base properties and catalytic activity of solid surfaces,” Journal of Catalysis, vol. 8, no. 1, pp. 1–7, 1967. View at Publisher · View at Google Scholar
  29. C. Venturello, R. D'Aloiso, J. C. Bart, and M. Ricci, “A new peroxotungsten heteropoly anion with special oxidizing properties: synthesis and structure of tetrahexylammonium tetra(diperoxotungsto)phosphate(3-),” Journal of Molecular Catalysis, vol. 32, no. 1, pp. 107–110, 1985. View at Publisher · View at Google Scholar
  30. G. Wahl, D. Kleinhenz, A. Schorm et al., “Peroxomolybdenum complexes as epoxidation catalysts in biphasic hydrogen peroxide activation: raman spectroscopic studies and density functional calculations,” Chemistry, vol. 5, no. 11, pp. 3237–3251, 1999. View at Google Scholar · View at Scopus
  31. P. Vazquez, M. Blanco, and C. Caceres, “Catalysts based on supported 12-molybdophosphoric acid,” Catalysis Letters, vol. 60, no. 4, pp. 205–215, 1999. View at Publisher · View at Google Scholar
  32. M. C. Capel-Sanchez, P. Perez-Presas, J. M. Campos-Martin, and J. L. G. Fierro, “Highly efficient deep desulfurization of fuels by chemical oxidation,” Catalysis Today, vol. 157, no. 1–4, pp. 390–396, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. V. P. Sazonov, D. G. Shaw, N. V. Sazonov et al., “IUPAC-NIST solubility data series. 77. C2+ nitroalkanes with water or organic solvents: binary and multicomponent systems,” Journal of Physical and Chemical Reference Data, vol. 31, no. 1, p. 1, 2002. View at Publisher · View at Google Scholar