Table of Contents
Journal of Applied Chemistry
Volume 2013, Article ID 194576, 6 pages
http://dx.doi.org/10.1155/2013/194576
Research Article

Thermal Decomposition Behavior of Melaminium Benzoate Dihydrate

1Department of Physics, Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai 62, India
2Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 2, P.O. Box 937, 50-950 Wrocław, Poland
3PG & Research Department of Physics, Pachaiyappa’s College, Chennai 30, India
4Department of Physics, Presidency College, Chennai 5, India

Received 5 April 2013; Accepted 5 June 2013

Academic Editor: Guennadi E. Zaikov

Copyright © 2013 N. Kanagathara et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Crystals of melaminium benzoate dihydrate (MBDH) have been grown from aqueous solution by slow solvent evaporation method at room temperature. Powder X-ray diffraction analysis confirms that MBDH crystallizes in the monoclinic system (C2/c). Thermal decomposition behavior of MBDH has been studied by thermogravimetric analysis at three different heating rates: 10, 15, and 20°C/min. Nonisothermal studies of MBDH revealed that the decomposition occurs in three stages. The values of effective activation energy (Ea) and preexponential factor (ln A) of each stage of thermal decomposition for all heating rates were calculated by model free methods: Arrhenius, Flynn-Wall, Friedman, Kissinger, and Kim-Park methods. A significant variation of effective activation energy (Ea) with conversion (α) indicates that the process is kinetically complex. The linear relationship between the A and Ea values was established (compensation effect). Avrami-Erofeev model (A3), contracting cylinder (R2), and Avrami-Erofeev model (A4) were accepted by stages I, II, and III, respectively. DSC has also been performed.