Table of Contents
Journal of Applied Chemistry
Volume 2014, Article ID 782618, 8 pages
http://dx.doi.org/10.1155/2014/782618
Research Article

Studies on Mechanical, Thermal, and Morphological Properties of Glass Fibre Reinforced Polyoxymethylene Nanocomposite

1Plastics Technology, Central Institute of Plastics Engineering and Technology, 32 T.V.K. Industrial Estate, Guindy, Chennai, Tamil Nadu 600032, India
2Department of Chemistry, Central Institute of Plastics Engineering and Technology, 32 T.V.K. Industrial Estate, Guindy, Chennai, Tamil Nadu 600032, India

Received 31 May 2014; Revised 11 September 2014; Accepted 8 October 2014; Published 6 November 2014

Academic Editor: Ioana Demetrescu

Copyright © 2014 K. Mohan Babu and M. Mettilda. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Polyoxymethylene is a material which has excellent mechanical properties similar to Nylon-6 filled with 30% GF. 75% POM and 25% glass fibre (POMGF) were blended with nanoclay to increase the tensile and flexural properties. Samples were extruded in twin screw extruder to blend POMGF and (1%, 3%, and 5%) Cloisite 25A nanoclay and specimens were prepared by injection moulding process. The tensile properties, flexural properties, impact strength, and hardness were investigated for the nanocomposites. The fibre pull-outs, fibre matrix adhesion, and cracks in composites were investigated by using scanning electron microscopy. 1% POMGF nanocomposite has low water absorption property. Addition of nanoclay improves the mechanical properties and thermal properties marginally. Improper blending of glass fibre and nanoclay gives low tensile strength and impact strength. SEM image shows the mixing of glass fibre and nanoclay among which 1% POMGF nanocomposite shows better properties compared to others. The thermal stability decreased marginally only with the addition of nanoclay.