Table of Contents Author Guidelines Submit a Manuscript
Journal of Applied Chemistry
Volume 2014 (2014), Article ID 835758, 6 pages
http://dx.doi.org/10.1155/2014/835758
Research Article

Benign Methodology and Efficient Catalysis for the One-Pot Multicomponent Synthesis of Dihydropyrimidinones and Thiones: A New Key for Old Lock

1Center for Health Studies, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
2Institute of Science, Nagpur University, Nagpur 440001, India
3Laboratoire de Chimie des Matériaux, Université Mohammed Premier, 6000 Oujda, Morocco

Received 29 October 2013; Accepted 13 March 2014; Published 9 April 2014

Academic Editor: Guang-Fu Yang

Copyright © 2014 Parvez Ali et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Ugi, A. Dömling, and W. Hörl, “Multicomponent reactions in organic chemistry,” Endeavour, vol. 18, no. 3, pp. 115–122, 1994. View at Google Scholar · View at Scopus
  2. R. W. Armstrong, A. P. Combs, P. A. Tempest, S. D. Brown, and T. A. Keating, “Multiple-component condensation strategies for combinatorial library synthesis,” Accounts of Chemical Research, vol. 29, no. 3, pp. 123–131, 1996. View at Publisher · View at Google Scholar
  3. L. F. Tietze and M. Lieb, “Domino reactions for library synthesis of small molecules in combinatorial chemistry,” Current Opinion in Chemical Biology, vol. 2, no. 3, pp. 363–371, 1998. View at Publisher · View at Google Scholar
  4. S. L. Dax, J. J. McNally, and M. A. Youngman, “Multi-component methodologies in solid-phase organic synthesis,” Current Medicinal Chemistry, vol. 6, no. 3, pp. 255–270, 1999. View at Google Scholar · View at Scopus
  5. A. Dömling, “Isocyanide based multi component reactions in combinatorial chemistry,” Combinatorial Chemistry & High Throughput Screening, vol. 1, pp. 1–22, 1998. View at Google Scholar
  6. M. J. Plunkett and J. A. Ellman, “Combinatorial chemistry and new drugs,” Scientific American, vol. 276, no. 4, pp. 68–73, 1997. View at Google Scholar · View at Scopus
  7. P. Biginelli, “Aldehyde-urea derivatives of aceto-and oxaloacetic acids,” Gazzetta Chimica Italiana, vol. 23, pp. 360–413, 1893. View at Google Scholar
  8. K. Folkers and T. B. Johnson, “Researches on pyrimidines. CV. Uracil-glycol,” Journal of the American Chemical Society, vol. 55, no. 9, pp. 3781–3783, 1933. View at Publisher · View at Google Scholar
  9. C. O. Kappe, “100 years of the Biginelli dihydropyrimidine synthesis,” Tetrahedron, vol. 49, no. 32, pp. 6937–6963, 1993. View at Publisher · View at Google Scholar · View at Scopus
  10. K. S. Atwal, B. N. Swanson, S. E. Unger et al., “Dihydropyrimidine calcium channel blockers. 3. 3-carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents,” Journal of Medicinal Chemistry, vol. 34, no. 2, pp. 806–811, 1991. View at Publisher · View at Google Scholar
  11. G. C. Rovnyak, S. D. Kimball, B. Beyer et al., “Calcium entry blockers and activators: conformational and structural determinants of dihydropyrimidine calcium channel modulators,” Journal of Medicinal Chemistry, vol. 38, no. 1, pp. 119–129, 1995. View at Google Scholar · View at Scopus
  12. C. O. Kappe, “Biologically active dihydropyrimidones of the Biginelli-type—a literature survey,” European Journal of Medicinal Chemistry, vol. 35, no. 12, pp. 1043–1052, 2000. View at Publisher · View at Google Scholar
  13. C. O. Kappe, “The generation of dihydropyrimidine libraries utilizing Biginelli multicomponent chemistry,” QSAR and Combinatorial Science, vol. 22, no. 6, pp. 630–645, 2003. View at Google Scholar · View at Scopus
  14. Y. S. Sadanandam, M. M. Shetty, and P. V. Diwan, “Synthesis and biological evaluation of new 3,4-dihydro-6-methyl-5-N-methyl-carbamoyl-4-(substituted phenyl)-2(1H)pyrimidinones and pyrimidinethiones,” European Journal of Medicinal Chemistry, vol. 27, no. 1, pp. 87–92, 1992. View at Publisher · View at Google Scholar
  15. D. A. Horton, G. T. Bourne, and M. L. Smythe, “The combinatorial synthesis of bicyclic privileged structures or privileged substructures,” Chemical Reviews, vol. 103, no. 3, pp. 893–930, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Heys, C. G. Moore, and P. Murphy, “The guanidine metabolites of Ptilocaulisspiculifer and related compounds; isolation and synthesis,” Chemical Society Reviews, vol. 29, no. 1, pp. 57–67, 2000. View at Publisher · View at Google Scholar
  17. Z. D. Aron and L. E. Overman, “The tethered Biginelli condensation in natural product synthesis,” Chemical Communications, no. 3, pp. 253–265, 2004. View at Google Scholar · View at Scopus
  18. A. K. Chhillar, P. Arya, C. Mukherjee et al., “Microwave-assisted synthesis of antimicrobial dihydropyridines and tetrahydropyrimidin-2-ones: novel compounds against aspergillosis,” Bioorganic and Medicinal Chemistry, vol. 14, no. 4, pp. 973–981, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. B. B. Snider, J. Chen, A. D. Patil, and A. J. Freyer, “Synthesis of the tricyclic portions of batzelladines A, B and D. Revision of the stereochemistry of batzelladines A and D,” Tetrahedron Letters, vol. 37, no. 39, pp. 6977–6980, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Barluenga, M. Tomas, A. Ballesteros, and L. A. Lopez, “1,4-cycloaddition of 1,3-diazabutadienes with enamines: an efficient route to the pyrimidine ring,” Tetrahedron Letters, vol. 30, no. 34, pp. 4573–4576, 1989. View at Publisher · View at Google Scholar
  21. B. C. O'Reilly and K. S. Atwal, “Synthesis of substituted 1,2,3,4-tetrahydro-6-methyl-2-oxo-5-pyrimidinecarboxylic acid esters: the Biginelli condensation revisited,” Heterocycles, vol. 26, no. 5, pp. 1185–1188, 1987. View at Publisher · View at Google Scholar
  22. J. Lu and H. Ma, “Iron(III)-catalyzed synthesis of dihydropyrimidinones. Improved conditions for the Biginelli reaction,” Synlett, no. 1, pp. 63–64, 2000. View at Google Scholar · View at Scopus
  23. E. H. Hu, D. R. Sidler, and U.-H. Dolling, “Unprecedented catalytic three component one-pot condensation reaction: an efficient synthesis of 5-alkoxycarbonyl-4-aryl-3,4-dihydropyrimidin- 2(1H)-ones,” Journal of Organic Chemistry, vol. 63, no. 10, pp. 3454–3457, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Ramalinga, P. Vijayalakshmi, and T. N. B. Kaimal, “Bismuth(III)-catalyzed synthesis of dihydropyrimidinones: improved protocol conditions for the Biginelli reaction,” Synlett, no. 6, pp. 863–865, 2001. View at Google Scholar · View at Scopus
  25. X. Hui and W. Yan-Guang, “A rapid and efficient Biginelli reaction catalyzed by zinc triflate,” Chinese Journal of Chemistry, vol. 21, no. 3, pp. 327–331, 2003. View at Publisher · View at Google Scholar
  26. A. S. Paraskar, G. K. Dewkar, and A. Sudalai, “Cu(OTf)2: a reusable catalyst for high-yield synthesis of 3,4-dihydropyrimidin-2(1H)-ones,” Tetrahedron Letters, vol. 44, no. 16, pp. 3305–3308, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Wang, C. Qian, H. Tian, and Y. Ma, “Lanthanide triflate catalyzed one-pot synthesis of dihydropyrimidin-2(1H)-thiones by a three-component of 1,3-dicarbonyl compounds, aldehydes, and thiourea using a solvent-free Biginelli condensation,” Synthetic Communications, vol. 33, no. 9, pp. 1459–1468, 2003. View at Publisher · View at Google Scholar
  28. Q. Sun, Y.-Q. Wang, Z.-M. Ge, T.-M. Cheng, and R.-T. Li, “A highly efficient solvent-free synthesis of dihydropyrimidinones catalyzed by zinc chloride,” Synthesis, no. 7, pp. 1047–1051, 2004. View at Google Scholar · View at Scopus
  29. Y. Yu, D. Liu, C. Liu, and G. Luo, “One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones using chloroacetic acid as catalyst,” Bioorganic & Medicinal Chemistry Letters, vol. 17, no. 12, pp. 3508–3510, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Debache, B. Boumoud, M. Amimour, A. Belfaitah, S. Rhouati, and B. Carboni, “Phenylboronic acid as a mild and efficient catalyst for Biginelli reaction,” Tetrahedron Letters, vol. 47, no. 32, pp. 5697–5699, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Debache, M. Amimour, A. Belfaitah, S. Rhouati, and B. Carboni, “A one-pot Biginelli synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones catalyzed by triphenylphosphine as Lewis base,” Tetrahedron Letters, vol. 49, no. 42, pp. 6119–6121, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. R. J. Schmidt, L. J. Lombardo, S. C. Traeger, and D. K. Williams, “One-pot two step synthesis of 5-cyano-dihydropyrimidinones using polyphosphate ester,” Tetrahedron Letters, vol. 49, no. 18, pp. 3009–3010, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Chitra and K. Pandiarajan, “Calcium fluoride: an efficient and reusable catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones and their corresponding 2(1H)thione: an improved high yielding protocol for the Biginelli reaction,” Tetrahedron Letters, vol. 50, no. 19, pp. 2222–2224, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Tamaddon, Z. Razmi, and A. A. Jafari, “Synthesis of 3,4-dihydropyrimidin-2(1H)-ones and 1,4-dihydropyridines using ammonium carbonate in water,” Tetrahedron Letters, vol. 51, no. 8, pp. 1187–1189, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. A. R. Katritzky and S. K. Singh, “Microwave-assisted heterocyclic synthesis,” Arkivoc, vol. 2003, no. 13, pp. 68–86, 2003. View at Google Scholar · View at Scopus
  36. K. Tanaka and F. Toda, “Solvent-free organic synthesis,” Chemical Reviews, vol. 100, no. 3, pp. 1025–1074, 2000. View at Google Scholar · View at Scopus
  37. A. Parvez, J. Meshram, M. H. Youssoufi, and T. B. Hadda, “Theoretical calculations and experimental verification of the antibacterial potential of some monocyclic β-lactams containing two synergetic buried antibacterial pharmacophore sites,” Phosphorus, Sulfur and Silicon and the Related Elements, vol. 185, no. 7, pp. 1500–1510, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Meshram, A. Parvez, and V. Tiwari, “Toward a novel approach to bis-β-lactam synthesis using Vilsmeier reagent as an efficient entity via Staudinger cycloaddition reaction,” Journal of Heterocyclic Chemistry, vol. 47, no. 6, pp. 1454–1458, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Pagadala, A. Parvez, and J. Meshram, “Microwave assisted synthesis and characterization of N,N-bis(salicylaldehydo)ethylenediimine complexes of Mn(II), Co(II), Ni(II), and Zn(II),” Journal of Coordination Chemistry, vol. 62, no. 24, pp. 4009–4017, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Parvez, R. Pagadala, and J. Meshram, “Exploring microwave synthesis for co-ordination: synthesis, spectral characterization and comparative study of transition metal complexes with binuclear core derived from 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one,” Journal of Coordination Chemistry, vol. 63, no. 2, pp. 323–329, 2010. View at Publisher · View at Google Scholar
  41. J. Meshram, A. Parvez, and V. Tiwari, “Zeolite as an efficient and recyclable activation surface for the synthesis of bis-thiazolidinones: theoretical screening owing to experimental biology,” Green Chemistry Letters and Reviews, vol. 3, no. 3, pp. 195–200, 2010. View at Publisher · View at Google Scholar
  42. N. Krause, Modern Organocopper Chemistry, Wiley-VCH, Weinheim, Germany, 2002.
  43. J. Hassan, M. Sévignon, C. Gozzi et al., “Aryl-aryl bond formation one century after the discovery of the ullmann reaction,” Chemical Reviews, vol. 102, no. 5, pp. 1359–1470, 2002. View at Publisher · View at Google Scholar
  44. H. Khabazzadeh, K. Saidi, and H. Sheibani, “Microwave-assisted synthesis of dihydropyrimidin-2(1H)-ones using graphite supported lanthanum chloride as a mild and efficient catalyst,” Bioorganic and Medicinal Chemistry Letters, vol. 18, no. 1, pp. 278–280, 2008. View at Publisher · View at Google Scholar · View at Scopus