Table of Contents
Journal of Atomic, Molecular, and Optical Physics
Volume 2011, Article ID 509507, 20 pages
Research Article

Polarization Holography in 3-Indoly-Benzylfulgimide/PMMA Film

1School of Physical Science and Technology, Inner Mongolia Universtiy, Huhhot 010021, China
2State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710068, China
3Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100101, China

Received 11 October 2010; Accepted 27 February 2011

Academic Editor: Ali Hussain Reshak

Copyright © 2011 Neimule Menke et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The photochromic and photoanisotropic properties of materials can be used in ordinary and polarization holographic recording respectively. Fulgides are well known as thermally irreversible organic photochromic compounds. And it is found that there exists photoinduced anisotropy in fulgide-doped polymeric films. In this report, a 3-indoly-benzylfulgimide/PMMA film was studied as a holographic storage media. First, the spectra and dynamics of photochromic and photoanisotropic properties of the sample are measured or calculated. Second, the diffraction efficiency (DE) dynamics at 633 nm of four kinds of different polarization holograms recorded in this sample are measured. The maximum DE value about 1% was gotten. Third, the DE spectra and DE dynamics are theoretically calculated in detail, and a good correlation of theoretically derived DE dynamic curves and the measured experimental curves was found. From the DE spectra, it is known that at the wavelengths less than 450 nm or greater than 700 nm, the nondestructive reading can be realized. The DWPS obtained in the experiments are same with the theortically deduced ones, which shows that in the orthogonal polarization holography, the polarization state of the diffracted light is orthogonal to that of the reconstruction light, which is very important to increase the SNR of the holographic storage. And all these results are applied and proved to be correct in high-density holographic image storage experiment. The area density of  bits/cm2 was obtained, and the encoded data was retrieved without error.