Table of Contents
Journal of Atomic, Molecular, and Optical Physics
Volume 2011, Article ID 649153, 23 pages
http://dx.doi.org/10.1155/2011/649153
Review Article

Optical Response Near the Soft X-Ray Absorption Edges and Structural Studies of Low Optical Contrast System Using Soft X-Ray Resonant Reflectivity

X-Ray Optics Section, Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India

Received 11 October 2010; Revised 10 January 2011; Accepted 7 February 2011

Academic Editor: Derrick S. F. Crothers

Copyright © 2011 Maheswar Nayak and Gyanendra S. Lodha. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. G. Parratt, “Surface studies of solids by total reflection of X-rays,” Physical Review, vol. 95, no. 2, pp. 359–369, 1954. View at Publisher · View at Google Scholar · View at Scopus
  2. S. K. Ghose and B. N. Dev, “X-ray standing wave and reflectometric characterization of multilayer structures,” Physical Review B, vol. 63, no. 24, Article ID 245409, 11 pages, 2001. View at Google Scholar · View at Scopus
  3. S. K. Ghose, D. K. Goswami, B. Rout, B. N. Dev, G. Kuri, and G. Materlik, “Ion-irradiation-induced mixing, interface broadening and period dilation in Pt/C multilayers,” Applied Physics Letters, vol. 79, no. 4, pp. 467–469, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. T. V. Chandrasekhar Rao and M. K. Sanyal, “The effect of growth defects on the X-ray reflectivity of multilayer systems,” Applied Surface Science, vol. 74, no. 4, pp. 315–321, 1994. View at Google Scholar · View at Scopus
  5. M. K. Sanyal, J. K. Basu, A. Datta, and S. Banerjee, “Determination of small fluctuations in electron density profiles of thin films: layer formation in a polystyrene film,” Europhysics Letters, vol. 36, no. 4, pp. 265–270, 1996. View at Google Scholar · View at Scopus
  6. S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, “X-ray and neutron scattering from rough surfaces,” Physical Review B, vol. 38, no. 4, pp. 2297–2311, 1988. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Sakurai and A. Iida, “Fourier analysis of interference structure in X-ray specular reflection from thin films,” Japanese Journal of Applied Physics, vol. 31, no. 2A, pp. L113–L115, 1992. View at Google Scholar · View at Scopus
  8. G. Vignaud, A. Gibaud, G. Grübel et al., “Ordering of diblock PS-PBMA thin films: an X-ray reflectivity study,” Physica B, vol. 248, no. 1–4, pp. 250–257, 1998. View at Google Scholar · View at Scopus
  9. C. J. Yu, A. G. Richter, A. Datta, M. K. Durbin, and P. Dutta, “Observation of molecular layering in thin liquid films using X-ray reflectivity,” Physical Review Letters, vol. 82, no. 11, pp. 2326–2329, 1999. View at Google Scholar · View at Scopus
  10. O. H. Seeck, I. D. Kaendler, M. Tolan et al., “Analysis of X-ray reflectivity data from low-contrast polymer bilayer systems using a Fourier method,” Applied Physics Letters, vol. 76, no. 19, pp. 2713–2715, 2000. View at Google Scholar · View at Scopus
  11. G. Evmenenko, S. W. Dugan, J. Kmetko, and P. Dutta, “Molecular ordering in thin liquid films of polydimethylsiloxanes,” Langmuir, vol. 17, no. 13, pp. 4021–4024, 2001. View at Google Scholar · View at Scopus
  12. T. Koga, Y. S. Seo, J. L. Jerome et al., “Low-density polymer thin film formation in supercritical carbon dioxide,” Applied Physics Letters, vol. 83, no. 21, pp. 4309–4311, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Grave de Peralta and H. Temkin, “Improved Fourier method of thickness determination by X-ray reflectivity,” Journal of Applied Physics, vol. 93, no. 4, pp. 1974–1977, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Bataillou, H. Moriceau, and F. Rieutord, “Direct inversion of interfacial reflectivity data using the Patterson function,” Journal of Applied Crystallography, vol. 36, no. 6, pp. 1352–1355, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Bridou, J. Gautier, F. Delmotte, M. F. Ravet, O. Durand, and M. Modreanu, “Thin multilayers characterization by grazing X-ray reflectometry and use of Fourier transform,” Applied Surface Science, vol. 253, no. 1, pp. 12–16, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Sakurai, M. Mizusawa, and M. Ishii, “Significance of frequency analysis in X-ray reflectivity: towards analysis which does not depend too much on models,” Transactions of the Materials Research Society of Japan, vol. 33, no. 3, pp. 523–528, 2008. View at Google Scholar
  17. O. G. Shpyrko, A. Yu. Grigoriev, R. Streitel et al., “Atomic-scale surface demixing in a eutectic liquid BiSn alloy,” Physical Review Letters, vol. 95, no. 10, Article ID 106103, 4 pages, 2005. View at Publisher · View at Google Scholar
  18. D. R. Lee, S. K. Sinha, D. Haskel et al., “X-ray resonant magnetic scattering from structurally and magnetically rough interfaces in multilayered systems. I. Specular reflectivity,” Physical Review B, vol. 68, no. 22, Article ID 224409, 19 pages, 2003. View at Google Scholar
  19. C. Vettier, “Resonant X-ray scattering in transition metal and rare-earth materials,” Journal of Electron Spectroscopy and Related Phenomena, vol. 117-118, pp. 113–128, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. S. Chu, H. You, J. A. Tanzer, T. E. Lister, and Z. Nagy, “Surface resonance X-ray scattering observation of core-electron binding-energy shifts of Pt(111)-surface atoms during electrochemical oxidation,” Physical Review Letters, vol. 83, no. 3, pp. 552–555, 1999. View at Google Scholar · View at Scopus
  21. G. Materlik, C. J. Sparks, and K. Fischer, Eds., Resonant Anomalous X-Ray Scattering: Theory and Applications, North-Holland, Amsterdam, The Netherlands, 1994.
  22. H. Ade, X. Zhang, S. Cameron, C. Costello, J. Kirz, and S. Williams, “Chemical contrast in X-ray microscopy and spatially resolved XANES spectroscopy of organic specimens,” Science, vol. 258, no. 5084, pp. 972–975, 1992. View at Google Scholar · View at Scopus
  23. D. Vaknin, P. Krüger, and M. Lösche, “Anomalous X-ray reflectivity characterization of ion distribution at biomimetic membranes,” Physical Review Letters, vol. 90, no. 17, Article ID 178102, 4 pages, 2003. View at Google Scholar · View at Scopus
  24. C. Park, P. A. Fenter, N. C. Sturchio, and J. R. Regalbuto, “Probing out-sphere adsorption of aqueous metal complexes at the oxide-water interface with resonant anomalous X-ray reflectivity,” Physical Review Letters, vol. 94, no. 7, Article ID 076104, 4 pages, 2005. View at Publisher · View at Google Scholar
  25. D. H. Kim, H. H. Lee, S. S. Kim et al., “Chemical depth profile of passive oxide on stainless steel,” Applied Physics Letters, vol. 85, no. 26, pp. 6427–6429, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. K. S. Lee, S. K. Kim, and J. B. Kortright, “Atomic-scale depth selectivity of soft X-ray resonant Kerr effect,” Applied Physics Letters, vol. 83, no. 18, pp. 3764–3766, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Strzalka, E. Dimasi, I. Kuzmenko, T. Gog, and J. K. Blasie, “Resonant X-ray reflectivity from a bromine-labeled fatty acid Langmuir monolayer,” Physical Review E, vol. 70, no. 5, Article ID 051603, 5 pages, 2004. View at Publisher · View at Google Scholar
  28. W. Bu, P. J. Ryan, and D. Vaknin, “Ion distributions at charged aqueous surfaces by near-resonance X-ray spectroscopy,” Journal of Synchrotron Radiation, vol. 13, no. 6, pp. 459–463, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Banerjee, Y. J. Park, D. R. Lee et al., “Anomalous X-ray reflectivity study of metal oxide thin films,” Applied Surface Science, vol. 136, no. 1-2, pp. 41–45, 1998. View at Google Scholar · View at Scopus
  30. M. K. Sanyal, S. K. Sinha, A. Gibaud et al., “Fourier reconstruction of density profiles of thin films using anomalous X-ray reflectivity,” Europhysics Letter, vol. 21, no. 6, pp. 691–696, 1993. View at Publisher · View at Google Scholar
  31. T. Ohkawa, Y. Yamaguchi, O. Sakata et al., “Anomalous dispersion X-ray reflectometry for model-independent determination of Al/C multilayer structures,” Physica B, vol. 221, no. 1–4, pp. 416–419, 1996. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Park and P. A. Fenter, “Phasing of resonant anomalous X-ray reflectivity spectra and direct Fourier synthesis of element-specific partial structures at buried interfaces,” Journal of Applied Crystallography, vol. 40, no. 2, pp. 290–301, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Feygenson, E. Kentzinger, N. Ziegenhagen et al., “Contrast variation by anomalous X-ray scattering applied to investigation of the interface morphology in a giant magnetoresistance Fe/Cr/Fe trilayer,” Journal of Applied Crystallography, vol. 40, no. 3, pp. 532–538, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Stragier, J. O. Cross, J. J. Rehr, L. B. Sorensen, C. E. Bouldin, and J. C. Woicik, “Diffraction anomalous fine structure: a new X-ray structural technique,” Physical Review Letters, vol. 69, no. 21, pp. 3064–3067, 1992. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Létoublon, V. Favre-Nicolin, H. Renevier et al., “Strain, size, and composition of InAs quantum sticks embedded in InP determined via grazing incidence X-ray anomalous diffraction,” Physical Review Letters, vol. 92, no. 18, Article ID 186101, 4 pages, 2004. View at Publisher · View at Google Scholar
  36. G. M. Luo, Z. H. Mai, T. P. A. Hase et al., “Variable wavelength grazing incidence X-ray reflectivity measurements of structural changes on annealing Cu/NiFe multilayers,” Physical Review B, vol. 64, no. 24, Article ID 245404, 7 pages, 2001. View at Google Scholar · View at Scopus
  37. C. Wang, T. Araki, and H. Ade, “Soft X-ray resonant reflectivity of low-Z materials thin films,” Applied Physics Letters, vol. 87, no. 21, Article ID 214109, 3 pages, 2005. View at Publisher · View at Google Scholar
  38. G. E. Mitchell, B. G. Landes, J. Lyons et al., “Molecular bond selective X-ray scattering for nanoscale analysis of soft matter,” Applied Physics Letters, vol. 89, no. 4, Article ID 044101, 3 pages, 2006. View at Publisher · View at Google Scholar
  39. C. Wang, T. Araki, B. Watts et al., “Resonant soft X-ray reflectivity of organic thin films,” Journal of Vacuum Science & Technology A, vol. 25, no. 3, pp. 575–586, 2007. View at Publisher · View at Google Scholar
  40. J. M. Virgili, Y. Tao, J. B. Kortright, N. P. Balsara, and R. A. Segalman, “Analysis of order formation in block copolymer thin films using resonant soft X-ray scattering,” Macromolecules, vol. 40, no. 6, pp. 2092–2099, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Ade and A. P. Hitchcock, “NEXAFS microscopy and resonant scattering: composition and orientation probed in real and reciprocal space,” Polymer, vol. 49, no. 3, pp. 643–675, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Wang, A. Garcia, H. Yan et al., “Interfacial widths of conjugated polymer bilayers,” Journal of the American Chemical Society, vol. 131, no. 35, pp. 12538–12539, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Ade, C. Wang, A. Garcia et al., “Characterization of multicomponent polymer trilayers with resonant soft X-ray reflectivity,” Journal of Polymer Science, Part B, vol. 47, no. 13, pp. 1291–1299, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Swaraj, C. Wang, T. Araki et al., “The utility of resonant soft X-ray scattering and reflectivity for the nanoscale characterization of polymers,” European Physical Journal: Special Topics, vol. 167, no. 1, pp. 121–126, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Daillant, “Recent developments and applications of grazing incidence scattering,” Current Opinion in Colloid and Interface Science, vol. 14, no. 6, pp. 396–401, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Swaraj, C. Wang, H. Yan et al., “Nanomorphology of bulk heterojunction photovoltaic thin films probed with resonant soft X-ray scattering,” Nano Letters, vol. 10, no. 8, pp. 2863–2869, 2010. View at Publisher · View at Google Scholar
  47. S. Stuhrmann, M. Marmotti, H. B. Stuhrmann, J. Thomas, C. Trame, and M. S. Lehmann, “Techniques of anomalous X-ray scattering from low-Z elements,” Nuclear Instruments and Methods in Physics Research, Section B, vol. 133, no. 1–4, pp. 151–156, 1997. View at Google Scholar · View at Scopus
  48. H. Hogrefe and C. Kunz, “Soft X-ray scattering from rough surfaces: experimental and theoretical analysis,” Applied Optics, vol. 26, no. 14, pp. 2851–2859, 1987. View at Publisher · View at Google Scholar
  49. J. A. Carlisle, L. J. Terminello, E. A. Hudson et al., “Characterization of buried thin films with resonant soft X-ray fluorescence,” Applied Physics Letters, vol. 67, no. 1, pp. 34–36, 1995. View at Google Scholar · View at Scopus
  50. M. Adamcyk, S. Eisebitt, A. Karl et al., “Surface roughness and resonant scattering effects in soft X-ray speckle from random semiconductor interfaces,” Surface Review and Letters, vol. 6, no. 6, pp. 1121–1128, 1999. View at Google Scholar · View at Scopus
  51. P. D. Hatten, S. B. Wilkins, T. A. W. Beale, T. K. Johal, D. Prabhakaran, and A. T. Boothroyd, “Resonant soft X-ray diffraction-In extremis,” Journal of Synchrotron Radiation, vol. 12, no. 4, pp. 434–441, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. S. P. Singh, M. H. Modi, and P. Srivastava, “Growth kinetics and compositional analysis of silicon rich a-SiNx:H film: a soft X-ray reflectivity study,” Applied Physics Letters, vol. 97, no. 15, Article ID 151906, 3 pages, 2010. View at Google Scholar
  53. H. Wadati, D. G. Hawthorn, J. Geck et al., “Resonant soft X-ray scattering studies of interface reconstructions in SrTiO3/LaAlO3 superlattices,” Journal of Applied Physics, vol. 106, no. 8, Article ID 083705, 5 pages, 2009. View at Publisher · View at Google Scholar
  54. M. Nayak, G. S. Lodha, A. K. Sinha, R. V. Nandedkar, and S. A. Shivashankar, “Determination of interlayer composition at buried interfaces using soft X-ray resonant reflectivity,” Applied Physics Letters, vol. 89, no. 18, Article ID 181920, 3 pages, 2006. View at Publisher · View at Google Scholar
  55. M. Nayak, G. S. Lodha, T. T. Prasad, P. Nageswararao, and A. K. Sinha, “Probing porosity at buried interfaces using soft X-ray resonant reflectivity,” Journal of Applied Physics, vol. 107, no. 2, Article ID 023529, 5 pages, 2010. View at Publisher · View at Google Scholar
  56. R. Loudon, The Quantum Theory of Light, Oxford University Press, London, UK, 2nd edition, 1983.
  57. J. D. Jackson, Classical Electrodynamics, Wiley, New York, NY, USA, 3rd edition, 1998.
  58. D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation, Cambridge University Press, Cambridge, UK, 1999.
  59. D. Y. Smith and J. H. Barkyoumb, “Sign reversal of the atomic scattering factor and grazing-incidence transmission at X-ray-absorption edges,” Physical Review B, vol. 41, no. 16, pp. 11529–11535, 1990. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Benfatto and R. Felici, “Resonant atomic scattering factor theory: a multiple scattering approach,” Physical Review B, vol. 64, no. 11, Article ID 115410, 9 pages, 2001. View at Google Scholar · View at Scopus
  61. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92,” Atomic Data and Nuclear Data Tables, vol. 54, no. 2, pp. 181–342, 1993. View at Publisher · View at Google Scholar · View at Scopus
  62. J. A. Nielsen and D. McMorrow, Elements of Modern X-Ray Physics, John Wiley & Sons, New York, NY, USA, 2001.
  63. E. Spiller, Soft X-Ray Optics, SPIE Optical Engineering Press, Washington, DC, USA, 1994.
  64. E. Filatova, V. Lukyanov, R. Barchewitz, J. M. André, M. Idir, and P. Stemmler, “Optical constants of amorphous SiO2 for photons in the range of 60-3000 eV,” Journal of Physics. Condensed Matter, vol. 11, no. 16, pp. 3355–3370, 1999. View at Google Scholar · View at Scopus
  65. T. W. Barbee Jr., W. K. Warburton, and J. H. Underwood, “Determination of the X-ray anomalous dispersion of titanium made with a titanium-carbon layered synthetic microstructure,” Journal of the Optical Society of America B, vol. 1, no. 5, pp. 691–698, 1984. View at Google Scholar · View at Scopus
  66. R. Soufli and E. M. Gullikson, “Reflectance measurements on clean surfaces for the determination of optical constants of silicon in the extreme ultraviolet-soft-X-ray region,” Applied Optics, vol. 36, no. 22, pp. 5499–5507, 1997. View at Google Scholar · View at Scopus
  67. P. Tripathi, G. S. Lodha, M. H. Modi, A. K. Sinha, K. J. S. Sawhney, and R. V. Nandedkar, “Optical constants of silicon and silicon dioxide using soft X-ray reflectance measurements,” Optics Communications, vol. 211, no. 1–6, pp. 215–223, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Magnuson and C. F. Hague, “Determination of the refractive index at soft X-ray resonances,” Journal of Electron Spectroscopy and Related Phenomena, vol. 137–140, pp. 519–522, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. L. Sève, J. M. Tonnerre, and D. Raoux, “Determination of the anomalous scattering factors in the soft X-ray range using diffraction from a multilayer,” Journal of Applied Crystallography, vol. 31, no. 5, pp. 700–707, 1998. View at Google Scholar · View at Scopus
  70. D. Ksenzov, C. Schlemper, and U. Pietsch, “Resonant soft X-ray reflectivity of Me/B4C multilayers near the boron K edge,” Applied Optics, vol. 49, no. 25, pp. 4767–4773, 2010. View at Google Scholar
  71. D. E. Aspnes, “The accurate determination of optical properties by Ellipsometry,” in Handbook of Optical Constants of Solids, E. D. Palik, Ed., pp. 89–112, Academic Press, London, UK, 1998. View at Google Scholar
  72. R. Manzke, “Optical properties of molybdenum by electron energy loss spectroscopy,” Physica Status Solidi (B), vol. 97, no. 1, pp. 157–160, 1980. View at Google Scholar · View at Scopus
  73. D. P. Siddons, “Some applications of X-ray interferometry,” in AIP Proceedings of the Topical Conference on Low Energy X-Ray Diagnostics, D. T. Attwood and B. L. Menke, Eds., vol. 75, pp. 236–241, AIP, New York, NY, USA, 1981. View at Google Scholar
  74. L. T. Lee, D. Langevin, E. K. Mann, and B. Farnoux, “Neutron reflectivity at liquid interfaces,” Physica B, vol. 198, no. 1–3, pp. 83–88, 1994. View at Google Scholar · View at Scopus
  75. J. Strzalka, B. R. Gibney, S. Satija, and J. K. Blasie, “Specular neutron reflectivity and the structure of artificial protein maquettes vectorially oriented at interfaces,” Physical Review E, vol. 70, no. 6, Article ID 061905, 10 pages, 2004. View at Publisher · View at Google Scholar
  76. A. G. Michette, “X-ray microscopy,” Reports on Progress in Physics, vol. 51, no. 12, pp. 1525–1606, 1988. View at Publisher · View at Google Scholar · View at Scopus
  77. J. Kirz, C. Jacobsen, and M. Howells, “Soft X-ray microscopes and their biological applications,” Quarterly Reviews of Biophysics, vol. 28, no. 1, pp. 33–130, 1995. View at Google Scholar · View at Scopus
  78. M. Born and E. Wolf, Principles of Optics, Pergamon, New York, NY, USA, 1980.
  79. L. V. Azaroff, R. Kaplow, N. Kato, R. J. Weiss, A. J. C. Wilson, and R. A. Young, X-Ray Diffraction, McGraw-Hill, New York, NY, USA, 1974.
  80. F. Abeles, “Recherches sur la propagation des ondes electromagnetiques sinusoidales dans les milieu stratifies,” Annales de Physique, vol. 5, p. 596, 1950. View at Google Scholar
  81. E. Ziegler, “Multilayers for high heat load synchrotron applications,” Optical Engineering, vol. 34, no. 2, pp. 445–452, 1995. View at Google Scholar
  82. H. Kiessig, “Interferenz von Röntgenstrahlen an dünnen Schichten,” Annalen Der Physik, vol. 402, no. 7, pp. 769–788, 1931. View at Google Scholar
  83. J. M. Cowley, Diffraction Physics, North-Holland, Amsterdam, The Netherlands, 1975.
  84. V. Holy, U. Pietsch, and T. Baumbach, High-Resolution X-Ray Scattering from Thin Films and Multilayers, Springer, Berlin, Germany, 1999.
  85. C. Giacovazzo, H. L. Monaco, and S. D. Viterbo, Fundamentals of Crystallography, Oxford Science Publications, Oxford, UK, 1991.
  86. L. Nevot and P. Croce, “Caractérisation des surfaces par réflexion rasante de rayons X. Application á I’ etude du polissage de quelques verres silicates,” Revue Physics Applied, vol. 15, pp. 761–779, 1980. View at Google Scholar
  87. M. Tolan, X-Ray Scattering from Soft-Matter Thin Films, Springer, Berlin, Germany, 1999.
  88. V. Holý and T. Baumbach, “Nonspecular X-ray reflection from rough multilayers,” Physical Review B, vol. 49, no. 15, pp. 10668–10676, 1994. View at Publisher · View at Google Scholar · View at Scopus
  89. M. Nayak, B. Gowrisankar, A. Verma, and G. S. Lodha, “Electron beam evaporation system for depositing X-ray multilayer mirrors,” Asian Journal of Physics, vol. 16, no. 4, pp. 395–405, 2007. View at Google Scholar
  90. S. Rai, M. K. Tiwari, G. S. Lodha et al., “Surface and interface study of pulsed-laser-deposited off-stoichiometric NiMnSb thin films on a Si(100) substrate,” Physical Review B, vol. 73, no. 3, Article ID 035417, 5 pages, 2006. View at Google Scholar
  91. R. V. Nandedkar, K. J. S. Sawhney, G. S. Lodha et al., “First results on the reflectometry beamline on Indus-1,” Current Science, vol. 82, no. 3, pp. 298–304, 2002. View at Google Scholar · View at Scopus
  92. R. Soufli and E. M. Gullikson, “Optical constants of materials for multilayer mirror applications in the EUV/soft X-ray region,” in Grazing Incidence and Multilayer X-Ray Optical Systems, R. B. Hoover and A. B. C. Walker II, Eds., vol. 3113 of Proceedings of SPIE, pp. 222–229, San Diego, Calif, USA, 1997.
  93. K. D. Joensen, P. Gorenstein, F. E. Christensen, G. Gutmn, and J. L. Wood, “Grazing incidence Fe-line telescopes using W/B4C multilayers,” Optical Engineering, vol. 34, no. 1, pp. 283–288, 1995. View at Google Scholar
  94. A. Kazimirov, D. M. Smilgies, Q. Shen et al., “Multilayer X-ray optics at CHESS,” Journal of Synchrotron Radiation, vol. 13, no. 2, pp. 204–210, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. T. W. Barbee Jr., S. Mrowka, and M. C. Hettrick, “Molybdenum-silicon multilayer mirrors for the extreme ultraviolet,” Applied Optics, vol. 24, no. 6, pp. 883–886, 1985. View at Google Scholar
  96. D. L. Windt and W. K. Waskiewicz, “Multilayer facilities required for extreme-ultraviolet lithography,” Journal of Vacuum Science and Technology B, vol. 12, no. 6, pp. 3826–3832, 1994. View at Google Scholar
  97. M. Toyoda, Y. Shitani, M. Yanagihara, T. Ejima, M. Yamamoto, and M. Watanabe, “A soft-X-ray imaging microscope with a multilayer-coated schwarzschild objective: imaging tests,” Japanese Journal of Applied Physics, Part 1, vol. 39, no. 4A, pp. 1926–1929, 2000. View at Google Scholar · View at Scopus
  98. R. Soufli, A. L. Aquila, F. Salmassi, M. Fernández-Perea, and E. M. Gullikson, “Optical constants of magnetron-sputtered boron carbide thin films from photoabsorption data in the range 30 to 770 eV,” Applied Optics, vol. 47, no. 25, pp. 4633–4639, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. D. Ksenzov, T. Panzner, C. Schlemper, C. Morawe, and U. Pietsch, “Optical properties of boron carbide near the boron K edge evaluated by soft-X-ray reflectometry from a Ru/B4C multilayer,” Applied Optics, vol. 48, no. 35, pp. 6684–6691, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. M. Fernadez-Perea, J. I. Larruquert, J. A. Aznarez et al., “Optical constants of electron-beam evaporated boron films in the 6.8-900 eV photon energy range,” Journal of Optical Society of America A, vol. 24, no. 12, pp. 3800–3807, 2007. View at Google Scholar
  101. D. M. Hoffman, G. L. Doll, and P. C. Eklund, “Optical properties of pyrolytic boron nitride in the energy range 0.05–10 eV,” Physical Review B, vol. 30, no. 10, pp. 6051–6056, 1984. View at Publisher · View at Google Scholar · View at Scopus
  102. N. Miyata, K. Moriki, O. Mishima, M. Fujisawa, and T. Hattori, “Optical constants of cubic boron nitride,” Physical Review B, vol. 40, no. 17, pp. 12028–12029, 1989. View at Publisher · View at Google Scholar · View at Scopus
  103. M. Khelkhal and F. Herlemont, “Infrared optical constants of polycrystalline boron nitride,” Applied Optics, vol. 32, no. 1, pp. 57–59, 1993. View at Google Scholar
  104. S. Yixi, J. Xin, W. Kun et al., “Vacuum-ultraviolet reflectance spectra and optical properties of nanoscale wurtzite boron nitride,” Physical Review B, vol. 50, no. 24, pp. 18637–18639, 1994. View at Publisher · View at Google Scholar · View at Scopus
  105. S. P. Murarka, Silicides for VLSI Applications, Academic Press, London, UK, 1983.
  106. J. M. Slaughter, A. Shapiro, P. A. Kearney, and C. M. Falco, “Growth of molybdenum on silicon: structure and interface formation,” Physical Review B, vol. 44, no. 8, pp. 3854–3863, 1991. View at Publisher · View at Google Scholar · View at Scopus
  107. S. Yulin, T. Feigl, T. Kuhlmann et al., “Interlayer transition zones in Mo/Si superlattices,” Journal of Applied Physics, vol. 92, no. 3, pp. 1216–1220, 2002. View at Publisher · View at Google Scholar · View at Scopus
  108. E. A. Brandes and G. B. Brook, Eds., Smithells Metals Reference Book, Butterworth-Heinemann, Oxford, UK, 1992.
  109. M. Nayak, G. S. Lodha, R. V. Nandedkar, S. M. Chaudhari, and P. Bhatt, “Interlayer composition in Mo-Si multilayers using X-ray photoelectron spectroscopy,” Journal of Electron Spectroscopy and Related Phenomena, vol. 152, no. 3, pp. 115–120, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. I. M. Tidswell, B. M. Ocko, P. S. Pershan, S. R. Wasserman, G. M. Whitesides, and J. D. Axe, “X-ray specular reflection studies of silicon coated by organic monolayers (alkylsiloxanes),” Physical Review B, vol. 41, no. 2, pp. 1111–1128, 1990. View at Publisher · View at Google Scholar · View at Scopus
  111. H. T. Hall and L. A. Compton, “Group IV analogs and high pressure, high temperature synthesis of B2O,” Inorganic Chemistry, vol. 4, no. 8, pp. 1213–1216, 1965. View at Google Scholar · View at Scopus
  112. A. P. Babichev, “Density of matter,” in Handbook of Physical Quantities, I. S. Grigoriev and E. Z. Meilikhov, Eds., chapter 5, pp. 115–144, CRC Press, New York, NY, USA, 1997. View at Google Scholar