Table of Contents
Journal of Atomic, Molecular, and Optical Physics
Volume 2012, Article ID 569876, 6 pages
Research Article

Energies, Fine Structures, and Hyperfine Structures of the States for the Beryllium Atom

School of Physics, Beijing Institute of Technology, Beijing 100081, China

Received 12 July 2012; Revised 15 August 2012; Accepted 27 August 2012

Academic Editor: Derrick S. F. Crothers

Copyright © 2012 Chao Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Energies and wave functions of the states for the beryllium atom are calculated with the full-core plus correlation wave functions. Fine structures and hyperfine structures are calculated with the first-order perturbation theory. For the state, the calculated energies, fine structure, and hyperfine structure parameters are in good agreement with the latest theoretical and experimental data in the literature; it is shown that atomic parameters of the low-lying excited states for the beryllium atom can be calculated accurately using this theoretical method. For the () states, the present calculations may provide valuable reference data for future theoretical calculations and experimental measurements.