Table of Contents
Journal of Atomic, Molecular, and Optical Physics
Volume 2012, Article ID 925278, 14 pages
Review Article

The Activation-Relaxation Technique: ART Nouveau and Kinetic ART

1Département de physique and RQMP, Université de Montréal, P.O. Box 6128, Succursale Centre-Ville, Montréal, QC, Canada H3C 3J7
2Science Program, Texas A&M at Qatar, Texas A&M Engineering Building, Education City, Doha, Qatar
3Nanosciences Foundation, 23 Rue des Martyrs, 38000 Grenoble, France
4Laboratoire de Simulation Atomistique (L_Sim), SP2M, UMR-E CEA/UJF-Grenoble 1, INAC, 38054 Grenoble, France
5CEA, DEN, Service de Recherches de Métallurgie Physique, 91191 Gif-sur-Yvette, France

Received 6 December 2011; Accepted 17 January 2012

Academic Editor: Jan Petter Hansen

Copyright © 2012 Normand Mousseau et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The evolution of many systems is dominated by rare activated events that occur on timescale ranging from nanoseconds to the hour or more. For such systems, simulations must leave aside the full thermal description to focus specifically on mechanisms that generate a configurational change. We present here the activation relaxation technique (ART), an open-ended saddle point search algorithm, and a series of recent improvements to ART nouveau and kinetic ART, an ART-based on-the-fly off-lattice self-learning kinetic Monte Carlo method.