Table of Contents
Journal of Atomic and Molecular Physics
Volume 2014, Article ID 431592, 11 pages
Research Article

A Model of Calculating Radiative Opacities of Hot Dense Plasmas Based on the Density-Functional Theory

Department of Physics, Faculty of Science, Nara Women’s University, Kitauoyanishi-machi, Nara 630-8506, Japan

Received 19 February 2014; Revised 14 July 2014; Accepted 15 July 2014; Published 2 September 2014

Academic Editor: George C. King

Copyright © 2014 Shuji Kiyokawa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We determine the radiative opacity of plasmas in a local thermal equilibrium (LTE) by time-dependent density-functional theory (TDDFT) including autoionization resonances, where the photoabsorption cross section is calculated for an ion embedded in the plasma using the detailed configuration accounting (DCA) method. The abundance of ion with integer occupation numbers is determined by means of the finite temperature density-functional theory (FTDFT). For an Al plasma of temperature  eV and density 0.01 g/cm3, we show the opacity and the photoabsorption cross section of b-f and b-b transitions with Doppler and Stark width, and also show a result that the Planck and Rosseland mean opacities are 28,348 cm2/g and 4,279 cm2/g, respectively.