Table of Contents
Journal of Anthropology
Volume 2012 (2012), Article ID 201502, 14 pages
http://dx.doi.org/10.1155/2012/201502
Research Article

The Human Mandible and the Origins of Speech

Department of Anthropology, University of Florida, Gainesville, FL 32611-7305, USA

Received 1 November 2011; Accepted 6 February 2012

Academic Editor: Emiliano Bruner

Copyright © 2012 David J. Daegling. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. L. Jungers, A. A. Pokempner, R. F. Kay, and M. Cartmill, “Hypoglossal Canal Size in Living Hominoids and the Evolution of Human Speech,” Human Biology, vol. 75, no. 4, pp. 473–484, 2003. View at Google Scholar · View at Scopus
  2. B. Arensburg, L. A. Schepartz, A. M. Tillier, B. Vandermeersch, and Y. Rak, “A reappraisal of the anatomical basis for speech in middle Palaeolithic hominids,” American Journal of Physical Anthropology, vol. 83, no. 2, pp. 137–146, 1990. View at Google Scholar · View at Scopus
  3. D. Degusta, W. H. Gilbert, and S. P. Turner, “Hypoglossal canal size and hominid speech,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 4, pp. 1800–1804, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. R. F. Kay, M. Cartmill, and M. Balow, “The hypoglossal canal and the origin of human vocal behavior,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 9, pp. 5417–5419, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. J. T. Laitman and R. C. Heimbuch, “The basicranium of Plio-Pleistocene hominids as an indicator of their upper respiratory systems,” American Journal of Physical Anthropology, vol. 59, no. 3, pp. 323–343, 1982. View at Google Scholar · View at Scopus
  6. P. Lieberman, J. T. Laitman, J. S. Reidenberg, K. Landahl, and P. J. Gannon, “Folk psychology and talking hyoids,” Nature, vol. 342, no. 6249, pp. 486–487, 1989. View at Google Scholar
  7. I. Ichim, J. Kieser, and M. Swain, “Tongue contractions during speech may have led to the development of the bony geometry of the chin following the evolution of human language: a mechanobiological hypothesis for the development of the human chin,” Medical Hypotheses, vol. 69, no. 1, pp. 20–24, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Keith, Antiquity of Man, Williams and Norgate, London, UK, 1916.
  9. O. Walkhoff, “Die menschliche Sprache in ihrer Bedeutung fur die funktionelle Gestalt des Unterkiefers,” Anatomischer Anzeiger, vol. 24, p. 129, 1904. View at Google Scholar
  10. R.H. Biggerstaff, “The biology of the human chin,” in Orofacial Growth and Development, A. A Dahlberg and T. M. Graber, Eds., pp. 71–87, Mouton, Paris, France, 1977. View at Google Scholar
  11. E.L. DuBrul and H. Sicher, The Adaptive Chin, Charles C. Thomas, Springfield, Ill, USA, 1954.
  12. T. T. Waterman, “The evolution of the chin,” American Naturalist, vol. 50, pp. 237–242, 1916. View at Google Scholar
  13. F. Weidenreich, “The mandibles of Sinanthropus pekinensis: a comparative study,” Palaeontologica Sinica Series D, vol. 7, pp. 1–164, 1936. View at Google Scholar
  14. D. J. Daegling, “Functional morphology of the human chin,” Evolutionary Anthropology Issues, News, and Reviews, vol. 1, no. 5, pp. 170–177, 1993. View at Google Scholar
  15. S. D. Dobson and E. Trinkaus, “Cross-sectional geometry and morphology of the mandibular symphysis in Middle and Late Pleistocene Homo,” Journal of Human Evolution, vol. 43, no. 1, pp. 67–87, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. J. H. Schwartz and I. Tattersall, “The human chin revisited: what is it and who has it?” Journal of Human Evolution, vol. 38, no. 3, pp. 367–409, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. D. J. Daegling, “Relationship of bone utilization and biomechanical competence in hominoid mandibles,” Archives of Oral Biology, vol. 52, no. 1, pp. 51–63, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. W. L. Hylander, “Mandibular function and biomechanical stress and scaling,” Integrative and Comparative Biology, vol. 25, no. 2, pp. 315–330, 1985. View at Publisher · View at Google Scholar · View at Scopus
  19. M. J. Ravosa, “Jaw morphology and function in living and fossil Old World monkeys,” International Journal of Primatology, vol. 17, no. 6, pp. 909–932, 1996. View at Google Scholar · View at Scopus
  20. M. J. Ravosa, “Size and scaling in the mandible of living and extinct apes,” Folia Primatologica, vol. 71, no. 5, pp. 305–322, 2000. View at Google Scholar · View at Scopus
  21. M. Bouvier, “Biomechanical scaling of mandibular dimensions in New World Monkeys,” International Journal of Primatology, vol. 7, no. 6, pp. 551–567, 1986. View at Publisher · View at Google Scholar · View at Scopus
  22. M. J. Ravosa, “Structural allometry of the prosimian mandibular corpus and symphysis,” Journal of Human Evolution, vol. 20, no. 1, pp. 3–20, 1991. View at Publisher · View at Google Scholar · View at Scopus
  23. D.J. Daegling, Geometry and biomechanics of hominoid mandibles, Ph.D. dissertation, State University of New York, Stony Brook, NY, USA, 1990.
  24. M. A. McCollum, C. C. Sherwood, C. J. Vinyard, C. O. Lovejoy, and F. Schachat, “Of muscle-bound crania and human brain evolution: the story behind the MYH16 headlines,” Journal of Human Evolution, vol. 50, no. 2, pp. 232–236, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. H. H. Stedman, B. W. Kozyak, A. Nelson et al., “Myosin gene mutation correlates with anatomical changes in the human lineage,” Nature, vol. 428, no. 6981, pp. 415–418, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Wrangham and N. Conklin-Brittain, “Cooking as a biological trait,” Comparative Biochemistry and Physiology A, vol. 136, no. 1, pp. 35–46, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. K. R. Agrawal, P. W. Lucas, J. F. Prinz, and I. C. Bruce, “Mechanical properties of foods responsible for resisting food breakdown in the human mouth,” Archives of Oral Biology, vol. 42, no. 1, pp. 1–9, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. L. M. Waugh, “Influence of diet on the jaw and face of the American Eskimo,” Journal of the American Dental Association, vol. 24, pp. 1640–1647, 1937. View at Google Scholar
  29. E. Helkimo, G. E. Carlsson, and M. Helkimo, “Bite force and state of dentition,” Acta Odontologica Scandinavica, vol. 35, no. 6, pp. 297–303, 1977. View at Google Scholar · View at Scopus
  30. G. J. Pruim, H. J. de Jongh, and J. J. Ten Bosch, “Forces acting on the mandible during bilateral static bite at different bite force levels,” Journal of Biomechanics, vol. 13, no. 9, pp. 755–763, 1980. View at Google Scholar · View at Scopus
  31. D. P. Sinn, E. A. de Assis, and G. S. Throckmorton, “Mandibular excursions and maximum bite forces in patients with temporomandibular joint disorders,” Journal of Oral and Maxillofacial Surgery, vol. 54, no. 6, pp. 671–679, 1996. View at Publisher · View at Google Scholar · View at Scopus
  32. M. C. Raadsheer, T. M. G. J. van Eijden, F. C. van Ginkel, and B. Prahl-Andersen, “Contribution of jaw muscle size and craniofacial morphology to human bite force magnitude,” Journal of Dental Research, vol. 78, no. 1, pp. 31–42, 1999. View at Google Scholar · View at Scopus
  33. B. Demes and N. Creel, “Bite force, diet, and cranial morphology of fossil hominids,” Journal of Human Evolution, vol. 17, no. 7, pp. 657–670, 1988. View at Google Scholar · View at Scopus
  34. S. Wroe, T. L. Ferrara, C. R. McHenry, D. Curnoe, and U. Chamoli, “The craniomandibular mechanics of being human,” Proceedings of the Royal Society B, vol. 277, no. 1700, pp. 3579–3586, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. P. W. Lucas, C. R. Peters, and S. R. Arrandale, “Seed-breaking forces exerted by orang-utans with their teeth in captivity and a new technique for estimating forces produced in the wild,” American Journal of Physical Anthropology, vol. 94, no. 3, pp. 365–378, 1994. View at Publisher · View at Google Scholar · View at Scopus
  36. D. R. Carter and G. S. Beaupre, Skeletal Function and Form, Cambridge University Press, Cambridge, UK, 2001.
  37. L. E. Lanyon and C. T. Rubin, “Functional adaptation in skeletal structures,” in Functional Vertebrate Morphology, M. Hildebrand, D. M. Bramble, K. F. Liem, and D. B. Wake, Eds., pp. 1–25, Harvard University Press, Cambridge, Mass, USA, 1985. View at Google Scholar
  38. R. B. Martin, D. B. Burr, and N. A. Sharkey, Skeletal Tissue Mechanics, Springer, New York, NY, USA, 1998.
  39. L. E. Lanyon and C. T. Rubin, “Static vs dynamic loads as an influence on bone remodelling,” Journal of Biomechanics, vol. 17, no. 12, pp. 897–905, 1984. View at Google Scholar · View at Scopus
  40. H. M. Frost, “Bone “mass” and the “mechanostat”: a proposal,” Anatomical Record, vol. 219, no. 1, pp. 1–9, 1987. View at Google Scholar · View at Scopus
  41. C. T. Rubin and L. E. Lanyon, “Regulation of bone mass by mechanical strain magnitude,” Calcified Tissue International, vol. 37, no. 4, pp. 411–417, 1985. View at Google Scholar · View at Scopus
  42. C. T. Rubin, K. J. McLeod, T. S. Gross, and H. J. Donahue, “Physical stimulus as potent determinants of bone morphology,” in Bone Biodynamics in Orthodontic and Orthopedic Treatment, D. S. Carlson and S. A. Goldstein, Eds., pp. 75–91, University of Michigan Center for Human Growth and Development, Ann Arbor, Mich, USA, 1991. View at Google Scholar
  43. Y. F. Hsieh and C. H. Turner, “Effects of loading frequency on mechanically induced bone formation,” Journal of Bone and Mineral Research, vol. 16, no. 5, pp. 918–924, 2001. View at Google Scholar · View at Scopus
  44. D. J. Daegling, “The relationship of in vivo bone strain to mandibular corpus morphology in Macaca fascicularis,” Journal of Human Evolution, vol. 25, no. 4, pp. 247–269, 1993. View at Publisher · View at Google Scholar · View at Scopus
  45. D. M. Cullen, R. T. Smith, and M. P. Akhter, “Bone-loading response varies with strain magnitude and cycle number,” Journal of Applied Physiology, vol. 91, no. 5, pp. 1971–1976, 2001. View at Google Scholar · View at Scopus
  46. M. R. Forwood and C. H. Turner, “The response of rat tibiae to incremental bouts of mechanical loading: a quantum concept for bone formation,” Bone, vol. 15, no. 6, pp. 603–609, 1994. View at Publisher · View at Google Scholar · View at Scopus
  47. J. E. A. Wolff, “A theoretical approach to solve the chin problem,” in Food Acquisition and Processing in Primates, D. J. Chivers, B. A. Wood, and A. Bilsborough, Eds., pp. 391–405, Plenum Press, New York, NY, USA, 1984. View at Google Scholar
  48. D. E. Lieberman, “How and why humans grow thin skulls: experimental evidence for systemic cortical robusticity,” American Journal of Physical Anthropology, vol. 101, no. 2, pp. 217–236, 1996. View at Publisher · View at Google Scholar · View at Scopus
  49. C. S. Larsen, Bioarchaeology: Interpreting Behavior from the Human Skeleton, Cambridge University Press, Cambridge, UK, 1997.
  50. D. C. M. Boyd, A Functional Model for Masticatory-Related Mandibular, Dental, and Craniofacial Microevolutionary Change Derived from a Selected Southeastern Indian Skeletal Temporal Series, University of Tennessee, Knoxville, Tenn, USA, 1988.
  51. C. S. Larsen, “The anthropology of St. Catherine's Islandpp. 3. prehistoric human biological adaptation,” Anthropological Papers of the American Museum of Natural History, vol. 57, no. 3, pp. 155–276, 1982. View at Google Scholar
  52. C. Rubin, A. S. Turner, C. Mallinckrodt, C. Jerome, K. Mcleod, and S. Bain, “Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone,” Bone, vol. 30, no. 3, pp. 445–452, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Rubin, A. S. Turner, S. Bain, C. Mallinckrodt, and K. McLeod, “Low mechanical signals strengthen long bones,” Nature, vol. 412, no. 6847, pp. 603–604, 2001. View at Google Scholar · View at Scopus
  54. V. Gilsanz, T. A. L. Wren, M. Sanchez, F. Dorey, S. Judex, and C. Rubin, “Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD,” Journal of Bone and Mineral Research, vol. 21, no. 9, pp. 1464–1474, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. J. W. Folkins, “Muscle activity for jaw closing during speech,” Journal of Speech and Hearing Research, vol. 24, no. 4, pp. 601–615, 1981. View at Google Scholar · View at Scopus
  56. K. M. Hiiemae and J. B. Palmer, “Tongue movements in feeding and speech,” Critical Reviews in Oral Biology and Medicine, vol. 14, no. 6, pp. 413–429, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Kumada, R. T. Todd, F. Bell-Berti, M. Niitsu, H. Hirose, and S. Niimi, “Functions of the muscles of the tongue during speech,” Journal of the Acoustical Society of America, vol. 104, no. 3, pp. 1819–1820, 1998. View at Google Scholar
  58. C. F. Ross, D. A. Reed, R. L. Washington, A. Eckhardt, F. Anapol, and N. Shahnoor, “Scaling of chew cycle duration in primates,” American Journal of Physical Anthropology, vol. 138, no. 1, pp. 30–44, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Lassauzay, M. A. Peyron, E. Albuisson, E. Dransfield, and A. Woda, “Variability of the masticatory process during chewing of elastic model foods,” European Journal of Oral Sciences, vol. 108, no. 6, pp. 484–492, 2000. View at Google Scholar · View at Scopus
  60. D. J. Ostry and J. R. Flanagan, “Human jaw movement in mastication and speech,” Archives of Oral Biology, vol. 34, no. 9, pp. 685–693, 1989. View at Google Scholar · View at Scopus
  61. E. Fosler-Lussier and N. Morgan, “Effects of speaking rate and word frequency on pronunciations in conversational speech,” Speech Communication, vol. 29, no. 2, pp. 137–158, 1999. View at Publisher · View at Google Scholar · View at Scopus
  62. H. Kuwabara, “Acoustic and perceptual properties of phonemes in continuous speech as a function of speaking rate,” in Proceedings of the 5th European Conference on Speech Communication and Technology (EUROSPEECH '97 ), pp. 1003–1006, Rhodes, Greece, 1997.
  63. M. A. Levent and H. L. H. John, “A study of temporal features and frequency characteristics in American English foreign accent,” Journal of the Acoustical Society of America, vol. 102, no. 1, pp. 28–40, 1997. View at Publisher · View at Google Scholar · View at Scopus
  64. N. Morgan and E. Fosler-Lussier, “Combining multiple estimators of speaking rate,” Acoustics, Speech and Signal Processing, vol. 2, pp. 729–732, 1998. View at Google Scholar
  65. T. W. P. Korioth, D. P. Romilly, and A. G. Hannam, “Three-dimensional finite element stress analysis of the dentate human mandible,” American Journal of Physical Anthropology, vol. 88, no. 1, pp. 69–96, 1992. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Motoyoshi, Y. Hama, E. Sugi, K. Takahashi, K. Kamijo, and S. Namura, “A finite element model of the human face. Stress distribution around the chin due to articulation of the five vowels in Japanese,” The Journal of Nihon University School of Dentistry, vol. 38, no. 1, pp. 11–20, 1996. View at Google Scholar · View at Scopus
  67. J. T. Stern Jr., Essentials of Gross Anatomy, FA Davis, Philadelphia, Pa, USA, 1988.
  68. W. L. Hylander, “Stress and strain in the mandibular symphysis of primates: a test of competing hypotheses,” American Journal of Physical Anthropology, vol. 64, no. 1, pp. 1–46, 1984. View at Google Scholar · View at Scopus
  69. B. Tuller, K. S. Harris, and B. Gross, “Electromyographic study of the jaw muscles during speech,” Journal of Phonetics, vol. 9, pp. 175–188, 1981. View at Google Scholar
  70. H. Fukase, “Functional significance of bone distribution in the human mandibular symphysis,” Anthropological Science, vol. 115, no. 1, pp. 55–62, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. N. Barber, “The evolutionary psychology of physical attractiveness: sexual selection and human morphology,” Ethology and Sociobiology, vol. 16, no. 5, pp. 395–424, 1995. View at Google Scholar · View at Scopus
  72. K. Grammer and R. Thornhill, “Human (Homo sapiens) facial attractiveness and sexual selection: the role of symmetry and averageness,” Journal of Comparative Psychology, vol. 108, no. 3, pp. 233–242, 1994. View at Publisher · View at Google Scholar · View at Scopus
  73. D. E. Lieberman, “Testing hypotheses about recent human evolution from skulls: integrating morphology, function, development, and phylogeny,” Current Anthropology, vol. 36, no. 2, pp. 159–197, 1995. View at Google Scholar
  74. F. Gröning, J. Liu, M. J. Fagan, and P. O'Higgins, “Why do humans have chins? Testing the mechanical signficance of modern human symphyseal morphology with finite element analysis,” American Journal of Physical Anthropology, vol. 144, pp. 593–606, 2011. View at Google Scholar
  75. I. Ichim, M. Swain, and J. A. Kieser, “Mandibular biomechanics and development of the human chin,” Journal of Dental Research, vol. 85, no. 7, pp. 638–642, 2006. View at Google Scholar · View at Scopus
  76. R. J. Smith, “Categories of allometry: body size versus biomechanics,” Journal of Human Evolution, vol. 24, no. 3, pp. 173–182, 1993. View at Publisher · View at Google Scholar · View at Scopus
  77. W. M. Bass, Human Osteology: A Laboratory and Field Manual, Missouri Archaeological Society, Columbia, Mo, USA, 3rd edition, 1987.
  78. M. Coquerelle, F. L. Bookstein, and J. Braga et al., “Sexual dimorphism of the human mandible and its association with dental development,” American Journal of Physical Anthropology, vol. 145, no. 2, pp. 192–202, 2011. View at Google Scholar
  79. R. L. Costa, Dental pathology and related factors in archaeological eskimo samples from point hope and Kodiak Island, Alaska, Ph.D. dissertation, University of Pennsylvania, 1977.
  80. S. J. Gould and R. C. Lewontin, “The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme,” Proceedings of the Royal Society of London B, vol. 205, no. 1161, pp. 581–598, 1979. View at Google Scholar · View at Scopus
  81. G. S. Krantz, “Sapienization and speech,” Current Anthropology, vol. 21, no. 6, pp. 773–792, 1980. View at Google Scholar
  82. A. J. Olejniczak, T. M. Smith, R. N. M. Feeney et al., “Dental tissue proportions and enamel thickness in Neandertal and modern human molars,” Journal of Human Evolution, vol. 55, no. 1, pp. 12–23, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. K. Kupczik and J. J. Hublin, “Mandibular molar root morphology in Neanderthals and Late Pleistocene and recent Homo sapiens,” Journal of Human Evolution, vol. 59, no. 5, pp. 525–541, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. E. K. Sauerland and S. P. Mitchell, “Electromyographic activity of the human Genioglossus muscle in response to respiration and to positional changes of the head,” Bulletin of the Los Angeles neurological societies, vol. 35, no. 2, pp. 69–73, 1970. View at Google Scholar · View at Scopus
  85. R. C. Basner, J. Ringler, R. M. Schwartzstein, S. E. Weinberger, and J. Woodrow Weiss, “Phasic electromyographic activity of the genioglossus increases in normals during slow-wave sleep,” Respiration Physiology, vol. 83, no. 2, pp. 189–200, 1991. View at Publisher · View at Google Scholar · View at Scopus
  86. E. K. Sauerland and R. M. Harper, “The human tongue during sleep: electromyographic activity of the genioglossus muscle,” Experimental Neurology, vol. 51, no. 1, pp. 160–170, 1976. View at Google Scholar · View at Scopus
  87. R. T. Brouillette and B. T. Thach, “Control of genioglossus muscle inspiratory activity,” Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 49, no. 5, pp. 801–808, 1980. View at Google Scholar · View at Scopus
  88. R. F. Fregosi and D. D. Fuller, “Respiratory-related control of extrinsic tongue muscle activity,” Respiration Physiology, vol. 110, no. 2-3, pp. 295–306, 1997. View at Publisher · View at Google Scholar · View at Scopus
  89. S. M. Farret, M. Vitti, and M. M. B. Farret, “Electromyographic analysis of the mentalis and depressor labii inferior muscles in the production of speech,” Electromyography and Clinical Neurophysiology, vol. 22, no. 1-2, pp. 137–148, 1982. View at Google Scholar · View at Scopus
  90. J. Clayton-Smith and L. Laan, “Angelman syndrome: a review of the clinical and genetic aspects,” Journal of Medical Genetics, vol. 40, no. 2, pp. 87–95, 2003. View at Google Scholar · View at Scopus
  91. N. C. Nowlan and P. J. Prendergast, “Evolution of mechanoregulation of bone growth will lead to non-optimal bone phenotypes,” Journal of Theoretical Biology, vol. 235, no. 3, pp. 408–418, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. C. T. Rubin and K. J. McLeod, “Biologic modulation of mechanical influences in bone remodeling,” in Biomechanics of Diarthrodial Joints, V. C. Mow, A. Ratcliff, and S. L.-Y. Woo, Eds., pp. 97–118, Springer, New York, NY, USA, 1990. View at Google Scholar
  93. C. T. Rubin, K. J. McLeod, and S. D. Bain, “Functional strains and cortical bone adaptation: epigenetic assurance of skeletal integrity,” Journal of Biomechanics, vol. 23, supplement 1, pp. 43–54, 1990. View at Publisher · View at Google Scholar · View at Scopus
  94. R. D. Kent, “The uniqueness of speech among motor systems,” Clinical Linguistics and Phonetics, vol. 18, no. 6–8, pp. 495–505, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. C. Rubin, S. Judex, and Y. X. Qin, “Low-level mechanical signals and their potential as a non-pharmacological intervention for osteoporosis,” Age and Ageing, vol. 35, no. 2, pp. ii32–ii36, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. T. M. Cole, “Postnatal heterochrony of the masticatory apparatus in Cebus apella and Cebus albifrons,” Journal of Human Evolution, vol. 23, no. 3, pp. 253–282, 1992. View at Google Scholar · View at Scopus
  97. O. M. Pearson and D. E. Lieberman, “The aging of Wolff's “law”: ontogeny and responses to mechanical loading in cortical bone,” American Journal of Physical Anthropology, vol. 39, pp. 63–99, 2004. View at Google Scholar · View at Scopus
  98. S. McBrearty and A. S. Brooks, “The revolution that wasn't: a new interpretation of the origin of modern human behavior,” Journal of Human Evolution, vol. 39, no. 5, pp. 453–563, 2000. View at Publisher · View at Google Scholar · View at Scopus
  99. F. E. Grine and D. J. Daegling, “New mandible of Paranthropus robustus from Member 1, Swartkrans Formation, South Africa,” Journal of Human Evolution, vol. 24, no. 4, pp. 319–333, 1993. View at Publisher · View at Google Scholar · View at Scopus
  100. P. Brown and T. Maeda, “Liang Bua Homo floresiensis mandibles and mandibular teeth: a contribution to the comparative morphology of a new hominin species,” Journal of Human Evolution, vol. 57, no. 5, pp. 571–596, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. J. L. Thompson and B. Illerhaus, “A new reconstruction of the Le Moustier 1 skull and investigation of internal structures using 3-D μCT data,” Journal of Human Evolution, vol. 35, no. 6, pp. 647–665, 1998. View at Publisher · View at Google Scholar · View at Scopus
  102. P. Bayle, J. Braga, A. Mazurier, and R. Macchiarelli, “Dental developmental pattern of the Neanderthal child from Roc de Marsal: a high-resolution 3D analysis,” Journal of Human Evolution, vol. 56, no. 1, pp. 66–75, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. J. Zilhau, D. E. Angelucci, E. Badal-Garcia et al., “Symbolic use of marine shells and mineral pigments by Iberian Neanderthals,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 3, pp. 1023–1028, 2010. View at Google Scholar
  104. B. Demes, J. T. Stern Jr., M. R. Hausman, S. G. Larson, K. J. Mcleod, and C. T. Rubin, “Patterns of strain in the macaque ulna during functional activity,” American Journal of Physical Anthropology, vol. 106, no. 1, pp. 87–100, 1998. View at Publisher · View at Google Scholar · View at Scopus
  105. B. Demes, Y. X. Qin, J. T. Stern Jr., S. G. Larson, and C. T. Rubin, “Patterns of strain in the macaque tibia during functional activity,” American Journal of Physical Anthropology, vol. 116, no. 4, pp. 257–265, 2001. View at Publisher · View at Google Scholar · View at Scopus
  106. D. E. Lieberman, J. D. Polk, and B. Demes, “Predicting Long Bone Loading from Cross-Sectional Geometry,” American Journal of Physical Anthropology, vol. 123, no. 2, pp. 156–171, 2004. View at Publisher · View at Google Scholar · View at Scopus