Table of Contents
Journal of Astrophysics
Volume 2013, Article ID 506146, 13 pages
http://dx.doi.org/10.1155/2013/506146
Research Article

-Process Nucleosynthesis in MHD Jet Explosions of Core-Collapse Supernovae

1Department of Physics, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan
2Department of Electronic Control, Kumamoto National College of Technology, Kumamoto 861-1102, Japan

Received 30 March 2013; Accepted 26 August 2013

Academic Editors: W. Cui, Y.-Z. Fan, and J. F. Valdés-Galicia

Copyright © 2013 Motoaki Saruwatari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Arnould, S. Goriely, and K. Takahashi, “The r-process of stellar nucleosynthesis: astrophysics and nuclear physics achievements and mysteries,” Physics Reports, vol. 450, no. 4-6, pp. 97–213, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. F. K. Thielemann, A. Arcones, R. Käppeli et al., “What are the astrophysical sites for the r-process and the production of heavy elements?” Progress in Particle and Nuclear Physics, vol. 66, no. 2, pp. 346–353, 2011. View at Publisher · View at Google Scholar
  3. Y. Z. Qian, “The r-process: current understanding and future tests,” in Proceedings of the 1st Argonne/MSU/JINA/INT RIA Wokshop, 2005.
  4. M. Hashimoto, “Supernova nucleosynthesis in massive stars,” Progress of Theoretical Physics, vol. 94, no. 5, pp. 663–736, 1995. View at Publisher · View at Google Scholar
  5. A. Heger, C. L. Fryer, S. E. Woosley, N. Langer, and D. D. H. Hartmann, “How massive single stars end their life,” Astrophysical Journal Letters, vol. 591, no. 1, pp. 288–300, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. H. T. Janka, R. Buras, K. Kifonidis, A. Marek, and M. Rampp, “Core-collapse supernovae at the threshold,” Springer Proceeding in Physics, vol. 99, pp. 253–262, 2005. View at Publisher · View at Google Scholar
  7. K. Sumiyoshi, S. Yamada, H. Suzuki, H. Shen, S. Chiba, and H. Toki, “Postbounce evolution of core-collapse supernovae: long-term effects of the equation of state,” Astrophysical Journal Letters, vol. 629, no. 2, pp. 922–932, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Burrows, E. Livne, L. Dessart, C. D. Ott, and J. Murphy, “A new mechanism for core-collapse supernova explosions,” Astrophysical Journal Letters, vol. 640, no. 2, pp. 878–890, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. F. S. Kitaura, H. T. Janka, and W. Hillebrandt, “Explosions of O-Ne-Mg cores, the Crab supernova and subluminous type II-P supernovae,” Astronomy and Astrophysics, vol. 450, no. 1, pp. 345–350, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Burrows, L. Dessart, E. Livne, C. D. Ott, and J. Murphy, “Simulations of magnetically driven supernova and hypernova explosions in the context of rapid rotation,” The Astrophysical Journal, vol. 664, no. 1, p. 416, 2007. View at Publisher · View at Google Scholar
  11. S. W. Bruenn, A. Mezzacappa, W. R. Hix et al., “The explosion of a rotating star as a supernova mechanism,” in American Institute of Physics Conference Series, G. Giobbi, A. Tornambe, G. Raimondo et al., Eds., vol. 1111, pp. 593–601, 2009. View at Google Scholar
  12. A. Marek and H. T. Janka, “Delayed neutrino-driven supernova explosions aided by the standing accretion-shock instability,” Astrophysical Journal Letters, vol. 694, no. 1, pp. 664–696, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Suwa, K. Kotake, T. Takiwaki, S. C. Whitehouse, M. Liebendörfer, and K. Sato, “Explosion geometry of a rotating 13m⊙ star driven by the sasi-aided neutrino-heating supernova mechanism,” Publications of the Astronomical Society of Japan, vol. 62, no. 6, pp. L49–L53, 2010. View at Google Scholar · View at Scopus
  14. T. Fischer, S. C. Whitehouse, A. Mezzacappa, F. K. Thielemann, and M. Liebendörfer, “Protoneutron star evolution and the neutrino-driven wind in general relativistic neutrino radiation hydrodynamics simulations,” Astronomy & Astrophysics, vol. 517, article A80, 25 pages, 2010. View at Publisher · View at Google Scholar
  15. T. Takiwaki, K. Kotake, and Y. Suwa, “Three-dimensional hydrodynamic core-collapse supernova simulations for an 11.2 M star with spectral neutrino transport,” Astronomical Journal, vol. 738, no. 2, article 165, 13 pages.
  16. G. S. Bisnovaty-Kogan, “Mechanism of core-collapse supernovae & simulation results from the CHIMERA code,” Astronomicheskii Zhurnal, vol. 47, p. 813, 1970. View at Google Scholar
  17. N. V. Ardeljan, G. S. Bisnovatyi-Kogan, and S. G. Moiseenko, “Explosion mechanisms of supernovae: the magnetorotational model,” Physics-Uspekhi, vol. 40, pp. 1076–1079, 1997. View at Publisher · View at Google Scholar
  18. N. V. Ardeljan, G. S. Bisnovatyi-Kogan, and S. G. Moiseenko, “Magnetorotational mechanism: 2D simulation,” in The Local Bubble and Beyond Lyman-Spitzer-Colloquium: Proceedings of the IAU Colloquium No. 166, vol. 506 of Lecture Notes in Physics, pp. 145–148, 1998. View at Publisher · View at Google Scholar
  19. G. S. Bisnovatyi-Kogan, N. V. Ardeljan, and S. G. Moiseenko, “Magnetorotational explosions: supernovae and jet formation,” Memorie della Societa Astronomica Italiana, vol. 73, pp. 1134–1143, 2002. View at Google Scholar
  20. N. V. Ardeljan, G. S. Bisnovatyi-Kogan, and S. G. Moiseenko, “Magnetorotational supernovae,” Monthly Notices of the Royal Astronomical Society, vol. 359, no. 1, pp. 333–344, 2005. View at Publisher · View at Google Scholar
  21. S. G. Moiseenko, G. S. Bisnovatyi-Kogan, and N. V. Ardeljan, “A magnetorotational core-collapse model with jets,” Monthly Notices of the Royal Astronomical Society, vol. 370, no. 1, pp. 501–512, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. G. S. Bisnovatyi-Kogan, S. G. Moiseenko, and N. V. Ardeljan, “Different magneto-rotational supernovae,” Astronomy Reports, vol. 12, no. 12, pp. 997–1008, 2008. View at Publisher · View at Google Scholar
  23. K. Kotake, H. Sawai, S. Yamada, and K. Sato, “Magnetorotational effects on anisotropic neutrino emission and convection in core-collapse supernovae,” Astrophysical Journal Letters, vol. 608, no. 1, pp. 391–404, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Kotake, S. Yamada, K. Sato, K. Sumiyoshi, H. Ono, and H. Suzuki, “Gravitational radiation from rotational core collapse: effects of magnetic fields and realistic equations of state,” Physical Review D, vol. 69, no. 12, Article ID 124004, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Yamada and H. Sawai, “Numerical study on the rotational collapse of strongly magnetized cores of massive stars,” Astrophysical Journal Letters, vol. 608, no. 2, pp. 907–924, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Yamada, K. Kotake, and T. Yamasaki, “The role of neutrinos, rotations and magnetic .elds in collapse-driven supernovae,” New Journal of Physics, vol. 6, article 79, pp. 1–24, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Takiwaki, K. Kotake, S. Nagataki, and K. Sato, “Magneto-driven shock waves in core-collapse supernovae,” Astrophysical Journal Letters, vol. 616, no. 2, pp. 1086–1094, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. J. M. Stone and M. L. Norman, “ZEUS-2D: a radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. II: the magnetohydrodynamic algorithms and tests,” Astrophysical Journal Supplement, vol. 80, p. 791, 1992. View at Publisher · View at Google Scholar
  29. H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi, “Relativistic equation of state of nuclear matter for supernova and neutron star,” Nuclear Physics A, vol. 637, no. 3, pp. 435–450, 1998. View at Google Scholar · View at Scopus
  30. S. Nishimura, K. Kotake, M. A. Hashimoto et al., “r-process nucleosynthesis in magnetohydrodynamic jet explosions of core-collapse supernovae,” Astrophysical Journal Letters, vol. 642, no. 1, pp. 410–419, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Liebendörfer, A. Mezzacappa, F. K. Thielemann, B. Messer, W. R. Hix, and S. Bruenn, “Probing the gravitational well: no supernova explosion in spherical symmetry with general relativistic Boltzmann neutrino transport,” Physical Review D, vol. 63, no. 10, Article ID 103004, 13 pages, 2001. View at Publisher · View at Google Scholar
  32. C. Winteler, R. Käppeli, A. Perego et al., “Magnetorotationally driven supernovae as the origin of early galaxy r-process elements?” Astrophysical Journal Letters, vol. 750, no. 1, article L22, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Saruwatari, M. Hashimoto, K. Kotake, and S. Yamada, “R-process nucleosynthesis during the magnetohydrodynamics explosions of a massive star,” in Proceedings of the 10th Internal Symposium on Origin of Matter and Evolution of Galaxies (OMEG '10), vol. 1269 of AIP Conference Proceedings, pp. 409–411, Osaka, Japan, March, 2010. View at Publisher · View at Google Scholar
  34. K. Mori, E. Gotthelf, S. Zhang et al., “NuSTAR discovery of A 3.76 s transient magnetar near sagittarius A,” The Astrophysical Journal, vol. 770, no. 2, article L23. View at Publisher · View at Google Scholar
  35. R. Epstein, “The generation of gravitational radiation by escaping supernova neutrinos,” The Astrophysical Journal, vol. 223, pp. 1037–1042, 1978. View at Publisher · View at Google Scholar
  36. M. Ruffert, H. T. Janka, and G. Schafer, “Coalescing neutron stars—a step towards physical models I. Hydrodynamical evolution and gravitational-wave emission,” Astronomy & Astrophysics, vol. 311, pp. 532–566, 1996. View at Google Scholar
  37. A. Staudt and H. V. Klapdor-Kleingrothaus, “Calculation of beta-delayed fission rates of neutron rich nuslei far off stability,” Nuclear Physics A, vol. 549, no. 2, pp. 254–264, 1992. View at Publisher · View at Google Scholar
  38. K. A. van Riper and J. M. Lattimer, “Stellar core collapse. I: infall epoch,” The Astrophysical Journal, vol. 249, pp. 270–289, 1981. View at Publisher · View at Google Scholar
  39. K. Kotake, S. Yamada, and K. Sato, “Anisotropic neutrino radiation in rotational core collapse,” Astrophysical Journal Letters, vol. 595, no. 1, pp. 304–316, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Rosswog and M. Liebendörfer, “High-resolution calculations of merging neutron stars. II: neutrino emission,” Monthly Notices of the Royal Astronomical Society, vol. 342, no. 3, pp. 673–689. View at Publisher · View at Google Scholar
  41. K. A. van Riper, “Stellar core collapse. II: inner core bounce and shock propagation,” The Astrophysical Journal, vol. 257, no. 15, pp. 793–820, 1982. View at Publisher · View at Google Scholar
  42. H. A. Bethe, “Supernova mechanisms,” Reviews of Modern Physics, vol. 62, no. 4, pp. 801–866, 1990. View at Publisher · View at Google Scholar
  43. H. T. Janka, “Conditions for shock revival by neutrino heating in core-collapse supernovae,” Astronomy and Astrophysics, vol. 368, no. 2, pp. 527–560, 2001. View at Google Scholar · View at Scopus
  44. D. L. Tubbs and D. N. Schramm, “Neutrino opacities at high temperatures and densities,” The Astrophysical Journal, vol. 201, pp. 467–488, 1975. View at Publisher · View at Google Scholar
  45. R. I. Epstein and C. J. Pethick, “Lepton loss and entropy generation in stellar collapse,” The Astrophysical Journal, vol. 243, pp. 1003–1012, 1981. View at Publisher · View at Google Scholar
  46. G. M. Fuller, W. A. Fowler, and M. J. Newmann, “Stellar weak interaction rates for intermediate-mass nuclei. II: A = 21 to A = 60,” The Astrophysical Journal, vol. 252, pp. 715–740, 1982. View at Publisher · View at Google Scholar
  47. K. Langanke, G. Martínez-Pinedo, J. M. Sampaio et al., “Electron capture rates on nuclei and implications for stellar core collapse,” Physical Review Letters, vol. 90, no. 24, Article ID 241102, pp. 1–4, 2003. View at Google Scholar · View at Scopus
  48. S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars, Wiley, 1983.
  49. S. A. Bludman, I. Lichtenstadt, and G. Hayden, “Homologous collapse and deleptonization of an evolved stellar core,” The Astrophysical Journal, vol. 261, pp. 661–676, 1982. View at Publisher · View at Google Scholar
  50. J. Cooperstein, “Neutrinos in supernovae,” Physics Reports, vol. 163, no. 1-3, pp. 95–126, 1988. View at Google Scholar · View at Scopus
  51. A. Heger, S. E. Woosley, and H. C. Spruit, “Presupernova evolution of differentially rotating massive stars including magnetic fields,” Astrophysical Journal, vol. 626, no. 1, pp. 350–363, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. D. D. Clayton, Principles of Stellar Evolution and Nucleosynthesis, McGraw-Hill, New York, NY, USA, 1968.
  53. W. A. Fowler and F. Hoyle, “Neutrino processes and pair formation in massive stars and supernovae,” Astrophysical Journal Supplement, vol. 9, p. 201, 1964. View at Publisher · View at Google Scholar
  54. L. F. Roberts, S. Reddy, and G. Shen, “Medium modification of the charged-current neutrino opacity and its implications,” Physical Review C, vol. 86, no. 6, Article ID 065803, 10 pages, 2012. View at Publisher · View at Google Scholar
  55. G. Martinez-Pinedo, T. Fischer, A. Lohs, and L. Huther, “Charged-current weak interaction processes in hot and dense matter and its impact on the spectra of neutrinos emitted from proto-neutron star cooling,” Physical Review Letters, vol. 109, no. 25, Article ID 251104, 2012. View at Publisher · View at Google Scholar
  56. M. Liebendörfer, S. C. Whitehouse, and T. Fischer, “The isotropic diffusion source approximation for supernova neutrino transport,” Astrophysical Journal Letters, vol. 698, no. 2, pp. 1174–1190, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Ono, M. A. Hashimoto, S. I. Fujimoto, K. Kotake, and S. Yamada, “Explosive nucleosynthesis in magnetohydrodynamical jets from collapsars,” Progress of Theoretical Physics, vol. 122, no. 3, pp. 755–777, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. H. T. Janka and E. Müller, “Neutrino heating, convection, and the mechanism of Type-II supernova explosions,” Astronomy & Astrophysics, vol. 306, p. 167, 1996. View at Google Scholar
  59. Y. Suwa, K. Kotake, T. Takiwaki, M. Liebendorfer, and K. Sato, “Impacts of collective neutrino oscillations on supernova explosions,” Astronomical Journal, vol. 749, no. 2, article 98, 17 pages.
  60. S. I. Fujimoto, K. Kotake, M. A. Hashimoto, M. Ono, and N. Ohnishi, “Explosive nucleosynthesis in the neutrino-driven aspherical supernova explosion of a non-rotating 15 M∞ star with solar metallicity,” Astrophysical Journal, vol. 738, no. 1, article 61, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. S. I. Fujimoto, K. Kotake, S. Yamada, M. A. Hashimoto, and K. Sato, “Magnetohydrodynamic simulations of a rotating massive star collapsing to a black hole,” Astrophysical Journal Letters, vol. 644, no. 2, pp. 1040–1055, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Ono, S. Nagataki, H. Ito et al., “Matter mixing in aspherical core-collapse supernovae: a search for possible conditions for conveying 56Ni into high velocity regions,” The Astrophysical Journal, vol. 773, no. 2, article 161, 2013. View at Publisher · View at Google Scholar
  63. V. V. Usov, “Millisecond pulsars with extremely strong magnetic fields as a cosmological source of γ-ray bursts,” Nature, vol. 357, pp. 472–474, 1992. View at Publisher · View at Google Scholar
  64. C. Thompson, “A model of gamma-ray bursts,” Monthly Notices of the Royal Astronomical Society, vol. 270, no. 3, p. 480, 1994. View at Google Scholar
  65. E. G. Blackman and I. Yi, “On fueling gamma-ray bursts and their afterglows with pulsars,” Astrophysical Journal Letters, vol. 498, no. 1, pp. L31–L35, 1998. View at Google Scholar · View at Scopus
  66. J. C. Wheeler, I. Yi, P. Höflich, and L. Wang, “Asymmetric supernovae, pulsars, magnetars, and gamma-ray bursts,” The Astrophysica l Journal, vol. 537, no. 2, pp. 810–823, 2000. View at Publisher · View at Google Scholar
  67. B. Zhang and P. Meszaros, “Gamma-ray burst afterglow with continuous energy injection: signature of a highly magnetized millisecond pulsar,” The Astrophysical Journal Letters, vol. 552, no. 1, article L35, 2001. View at Publisher · View at Google Scholar
  68. T. A. Thompson, P. Chang, and E. Quataert, “Magnetar spin-down, hyperenergetic supernovae, and gamma-ray bursts,” Astrophysical Journal Letters, vol. 611, no. 1, pp. 380–393, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. N. Bucciantini, E. Quataert, J. Arons, B. D. Metzger, and T. A. Thompson, “Magnetar-driven bubbles and the origin of collimated outflows in gamma-ray bursts,” Monthly Notices of the Royal Astronomical Society, vol. 380, no. 4, pp. 1541–1553, 2007. View at Publisher · View at Google Scholar
  70. N. Bucciantini, E. Quataert, J. Arons, B. D. Metzger, and T. A. Thompson, “Relativistic jets and long-duration gamma-ray bursts from the birth of magnetars,” Monthly Notices of the Royal Astronomical Society, vol. 383, no. 1, pp. L25–L29, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. N. Bucciantini, E. Quataert, B. D. Metzger, T. A. Thompson, J. Arons, and L. Del Zanna, “Magnetized relativistic jets and long-duration GRBs from magnetar spin-down during core-collapse supernovae,” Monthly Notices of the Royal Astronomical Society, vol. 396, no. 4, pp. 2038–2050, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. B. D. Metzger, T. A. Thompson, and E. Quataert, “Proto-neutron star winds with magnetic fields and rotation,” Astrophysical Journal Letters, vol. 659, no. 1, pp. 561–579, 2007. View at Publisher · View at Google Scholar · View at Scopus