Table of Contents
Journal of Astrophysics
Volume 2013, Article ID 587294, 9 pages
http://dx.doi.org/10.1155/2013/587294
Research Article

Constraint on Heavy Element Production in Inhomogeneous Big-Bang Nucleosynthesis from the Light Element Observations

1Department of Physics, Graduate School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
2Department of Control and Information Systems Engineering, Kumamoto National College of Technology, 2659-2 Suya, Koshi, Kumamoto 861-1102, Japan
3Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568, Japan
4National Institutes of Natural Sciences, Kamiyacho Central Place 2F, 4-3-13 Toranomon, Minato-ku, Tokyo 104-0001, Japan

Received 30 March 2013; Accepted 29 July 2013

Academic Editors: G. Chincarini, X. Dai, A. De Rosa, M. S. Dimitrijevic, and G. Wegner

Copyright © 2013 Riou Nakamura et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Beringer, J. F. Arguin, R. M. Barnett et al., “Review of particle physics,” Physical Review D, vol. 86, no. 1, Article ID 010001, 1528 pages, 2012. View at Publisher · View at Google Scholar
  2. G. Steigman, “Primordial nucleosynthesis in the precision cosmology era,” Annual Review of Nuclear and Particle Science, vol. 57, pp. 463–491, 2007. View at Publisher · View at Google Scholar
  3. F. Iocco, G. Mangano, G. Miele, O. Pisanti, and P. D. Serpico, “Primordial nucleosynthesis: from precision cosmology to fundamental physics,” Physics Reports, vol. 472, no. 1–6, pp. 1–76, 2009. View at Publisher · View at Google Scholar
  4. A. Coc, S. Goriely, Y. Xu, M. Saimpert, and E. Vangioni, “Standard big bang nucleosynthesis up to CNO with an improved extended nuclear network,” The Astrophysical Journal, vol. 744, no. 2, article 158, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. V. Luridiana, A. Peimbert, M. Peimbert, and M. Cerviño, “The effect of collisional enhancement of Balmer lines on the determination of the primordial helium abundance,” The Astrophysical Journal Letters, vol. 592, no. 2, pp. 846–865, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. K. A. Olive and E. D. Skillman, “A realistic determination of the error on the primordial helium abundance: steps toward nonparametric nebular helium abundances,” The Astrophysical Journal, vol. 617, no. 1, pp. 29–40, 2004. View at Publisher · View at Google Scholar
  7. Y. I. Izotov, T. X. Thuan, and G. Stasińska, “The primordial abundance of 4He: a self-consistent empirical analysis of systematic effects in a large sample of low-metallicity H II regions,” The Astrophysical Journal, vol. 662, no. 1, article 15, 2007. View at Publisher · View at Google Scholar
  8. Y. I. Izotov and T. X. Thuan, “The primordial abundance of 4He: evidence for non-standard big bang nucleosynthesis,” The Astrophysical Journal Letters, vol. 710, no. 1, pp. L67–L71, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Aver, K. A. Olive, and E. D. Skillman, “An MCMC determination of the primordial helium abundance,” Journal of Cosmology and Astroparticle Physics, vol. 2012, no. 4, article 4, 2012. View at Google Scholar
  10. D. Kirkman, D. Tytler, N. Suzuki, J. M. O’Meara, and D. Lubin, “The cosmological baryon density from the deuterium-to-hydrogen ratio in QSO absorption systems: D/H toward Q1243+3047,” The Astrophysical Journal Supplement Series, vol. 149, no. 1, article 1, 2003. View at Publisher · View at Google Scholar
  11. J. M. O’Meara, S. Burles, J. X. Prochaska, G. E. Prochter, R. A. Bernstein, and K. M. Burgess, “The deuterium-to-hydrogen abundance ratio toward the QSO SDSS J155810.16-003120.0,” The Astrophysical Journal Letters, vol. 649, no. 2, article L61, 2006. View at Publisher · View at Google Scholar
  12. M. Pettini, B. J. Zych, M. T. Murphy, A. Lewis, and C. C. Steidel, “Deuterium abundance in the most metal-poor damped Lyman alpha system: converging on Ωb,0h2,” Monthly Notices of the Royal Astronomical Society, vol. 391, no. 4, pp. 1499–1510, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Pettini and R. Cooke, “A new, precise measurement of the primordial abundance of deuterium,” Monthly Notices of the Royal Astronomical Society, vol. 425, no. 4, pp. 2477–2486, 2012. View at Publisher · View at Google Scholar
  14. T. M. Bania, R. T. Rood, and D. S. Balser, “The cosmological density of baryons from observations of 3He+ in the Milky Way,” Nature, vol. 415, no. 6867, pp. 54–57, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Vangioni-Flam, K. A. Olive, B. D. Fields, and M. Cassé, “On the baryometric status of 3He,” The Astrophysical Journal, vol. 585, no. 2, article 611, 2003. View at Publisher · View at Google Scholar
  16. C. L. Bennett, D. Larson, J. L. Weiland et al., “Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: final maps and results,” Astrophysical Journal Supplement Series, http://arxiv.org/abs/1212.5225.
  17. S. Matsuura, A. D. Dolgov, S. Nagataki, and K. Sato, “Affleck-dine baryogenesis and heavy element production from inhomogeneous big bang nucleosynthesis,” Progress of Theoretical Physics, vol. 112, no. 6, pp. 971–981, 2004. View at Publisher · View at Google Scholar
  18. C. Alcock, G. M. Fuller, and G. J. Mathews, “The quark-hadron phase transition and primordial nucleosynthesis,” The Astrophysical Journal, vol. 320, pp. 439–447, 1987. View at Publisher · View at Google Scholar
  19. G. M. Fuller, G. J. Mathews, and C. R. Alcock, “Quark-hadron phase transition in the early Universe: Isothermal baryon-number fluctuations and primordial nucleosynthesis,” Physical Review D, vol. 37, no. 6, pp. 1380–1400, 1988. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Kurki-Suonio and R. A. Matzner, “Effect of small-scale baryon inhomogeneity on cosmic nucleosynthesis,” Physical Review D, vol. 39, no. 4, pp. 1046–1053, 1989. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Kurki-Suonio and R. A. Matzner, “Overproduction of 4He in strongly inhomogeneous Ωb=1 models of primordial nucleosynthesis,” Physical Review D, vol. 42, no. 4, pp. 1047–1056, 1990. View at Publisher · View at Google Scholar
  22. C. L. Bennett, M. Halpern, G. Hinshaw et al., “First-year Wilkinson microwave anisotropy probe (WMAP) observations: preliminary maps and basic results,” The Astrophysical Journal Supplement Series, vol. 148, no. 1, article 1, 2003. View at Publisher · View at Google Scholar
  23. D. N. Spergel, R. Bean, O. Doré et al., “Three-year Wilkinson microwave anisotropy probe (WMAP) observations: implications for cosmology,” The Astrophysical Journal Supplement Series, vol. 170, no. 2, article 377, 2007. View at Publisher · View at Google Scholar
  24. J. Dunkley, E. Komatsu, M. R. Nolta et al., “Five-year Wilkinson microwave anisotropy probe observations: likelihoods and parameters from the WMAP data,” The Astrophysical Journal Supplement Series, vol. 180, no. 2, article 306, 2009. View at Publisher · View at Google Scholar
  25. J. H. Applegate, C. J. Hogan, and R. J. Scherrer, “Cosmological baryon diffusion and nucleosynthesis,” Physical Review D, vol. 35, no. 4, pp. 1151–1160, 1987. View at Publisher · View at Google Scholar
  26. R. M. Malaney and W. A. Fowler, “Late-time neutron diffusion and nucleosynthesis in a post-QCD inhomogeneous Ω(b) = 1 universe,” The Astrophysical Journal, vol. 333, pp. 14–20, 1988. View at Publisher · View at Google Scholar
  27. J. H. Applegate, C. J. Hogan, and R. J. Scherrer, “Cosmological quantum chromodynamics, neutron diffusion, and the production of primordial heavy elements,” The Astrophysical Journal, vol. 329, pp. 572–579, 1988. View at Publisher · View at Google Scholar
  28. N. Terasawa and K. Sato, “Production of Be-9 and heavy elements in the inhomogeneous universe,” The Astrophysical Journal, vol. 362, pp. L47–L49, 1990. View at Publisher · View at Google Scholar
  29. D. Thomas, D. N. Schramm, K. A. Olive, G. J. Mathews, B. S. Meyer, and B. D. Fields, “Production of lithium, beryllium, and boron from baryon inhomogeneous primordial nucleosynthesis,” The Astrophysical Journal, vol. 430, no. 1, pp. 291–299, 1994. View at Publisher · View at Google Scholar
  30. N. Terasawa and K. Sato, “Neutron diffusion and nucleosynthesis in the Universe with isothermal fluctuations produced by quark-hadron phase transition,” Physical Review D, vol. 39, no. 10, pp. 2893–2900, 1989. View at Publisher · View at Google Scholar
  31. K. Jedamzik and J. B. Rehm, “Inhomogeneous big bang nucleosynthesis: upper limit on Ωb and production of lithium, beryllium, and boron,” Physical Review D, vol. 64, no. 2, Article ID 023510, 8 pages, 2001. View at Publisher · View at Google Scholar
  32. T. Rauscher, H. Applegate, J. Cowan, F. Thielmann, and M. Wiescher, “Production of heavy elements in inhomogeneous cosmologies,” The Astrophysical Journal, vol. 429, no. 2, pp. 499–530, 1994. View at Publisher · View at Google Scholar
  33. K. Jedamzik, G. M. Fuller, G. J. Mathews, and T. Kajino, “Enhanced heavy-element formation in baryon-inhomogeneous big bang models,” The Astrophysical Journal Letters, vol. 422, no. 2, pp. 423–429, 1994. View at Google Scholar · View at Scopus
  34. R. V. Wagoner, W. A. Fowler, and F. Hoyle, “On the synthesis of elements at very high temperatures,” The Astrophysical Journal, vol. 148, article 3, 1967. View at Publisher · View at Google Scholar
  35. R. V. Wagoner, “Big bang nucleosynthesis revisited,” The Astrophysical Journal, vol. 179, pp. 343–360, 1973. View at Publisher · View at Google Scholar
  36. Y. Juarez, R. Maiolino, R. Mujica et al., “The metallicity of the most distant quasars,” Astronomy and Astrophysics, vol. 494, no. 2, pp. L25–L28, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Moriya and T. Shigeyama, “Multiple main sequence of globular clusters as a result of inhomogeneous big bang nucleosynthesis,” Physical Review D, vol. 81, no. 4, Article ID 043004, 7 pages, 2010. View at Publisher · View at Google Scholar
  38. L. R. Bedin, G. Piotto, J. Anderson et al., “ω centauri: the population puzzle goes deeper,” The Astrophysical Journal Letters, vol. 605, no. 2, article L125, 2004. View at Publisher · View at Google Scholar
  39. G. Piotto, L. R. Bedin, J. Anderson et al., “A triple main sequence in the globular cluster NGC 2808,” The Astrophysical Journal Letters, vol. 661, no. 1, article L53, 2007. View at Publisher · View at Google Scholar
  40. I. Affleck and M. Dine, “A new mechanism for baryogenesis,” Nuclear Physics B, vol. 249, no. 2, pp. 361–380, 1985. View at Publisher · View at Google Scholar
  41. T. Rauscher, “Comment on ‘heavy element production in inhomogeneous big bang nucleosynthesis’,” Physical Review D, vol. 75, no. 6, Article ID 068301, 2 pages, 2007. View at Publisher · View at Google Scholar
  42. S. Matsuura, S. I. Fujimoto, S. Nishimura, M. A. Hashimoto, and K. Sato, “Heavy element production in inhomogeneous big bang nucleosynthesis,” Physical Review D, vol. 72, no. 12, Article ID 123505, 6 pages, 2005. View at Publisher · View at Google Scholar
  43. S. Matsuura, S. I. Fujimoto, M. A. Hashimoto, and K. Sato, “Reply to ‘Comment on heavy element production in inhomogeneous big bang nucleosynthesis’,” Physical Review D, vol. 75, no. 6, Article ID 068302, 5 pages, 2007. View at Publisher · View at Google Scholar
  44. M. Hashimoto and K. Arai, “The nuclear reaction network,” Physics Reports of Kumamoto University, vol. 7, no. 2, pp. 47–65, 1985. View at Google Scholar
  45. P. Descouvemont, A. Adahchour, C. Angulo, A. Coc, and E. Vangioni-Flam, “Compilation and R-matrix analysis of big bang nuclear reaction rates,” Atomic Data and Nuclear Data Tables, vol. 88, no. 1, pp. 203–236, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Fujimoto, M. Hashimoto, O. Koike, K. Arai, and R. Matsuba, “p-process nucleosynthesis inside supernova-driven supercritical accretion disks,” The Astrophysical Journal, vol. 585, no. 1, article 418, 2003. View at Publisher · View at Google Scholar
  47. O. Koike, M. Hashimoto, R. Kuromizu, and S. Fujimoto, “Final products of the rp-process on accreting neutron stars,” The Astrophysical Journal, vol. 603, no. 1, article 592, 2004. View at Publisher · View at Google Scholar
  48. S. Fujimoto, M. Hashimoto, K. Arai, and R. Matsuba, “Nucleosynthesis inside an accretion disk and disk winds related to gamma-ray bursts,” The Astrophysical Journal, vol. 614, no. 2, article 847, 2004. View at Publisher · View at Google Scholar
  49. S. Nishimura, K. Kotake, M. Hashimoto et al., “r-process nucleosynthesis in magnetohydrodynamic jet explosions of core-collapse supernovae,” The Astrophysical Journal, vol. 642, no. 1, article 410, 2006. View at Publisher · View at Google Scholar
  50. K. Kawano, “Let's go: early universe 2. Primordial nucleosynthesis. The computer way,” FERMILAB-Pub-92/04-A, 58 pages, 1992.
  51. M. Hashimoto, “Supernova nucleosynthesis in massive stars,” Progress of Theoretical Physics, vol. 94, no. 5, pp. 663–736, 1995. View at Publisher · View at Google Scholar
  52. E. Anders and N. Grevesse, “Abundances of the elements: meteoritic and solar,” Geochimica et Cosmochimica Acta, vol. 53, no. 1, pp. 197–214, 1989. View at Publisher · View at Google Scholar
  53. A. Frebel, N. Christlieb, J. E. Norris, C. Thom, T. C. Beers, and J. Rhee, “Discovery of HE 1523-0901, a strongly r-process-enhanced metal-poor star with detected uranium,” The Astrophysical Journal Letters, vol. 660, no. 2, pp. L117–L120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Frebel, J. E. Norris, W. Aoki et al., “Chemical abundance analysis of the extremely metal-poor star HE 1300+0157,” The Astrophysical Journal, vol. 658, no. 1, article 534, 2007. View at Publisher · View at Google Scholar
  55. C. Siqueira Mello, M. Spite, B. Barbuy et al., “First stars: XVI. HST/STIS abundances of heavy elements in the uranium-rich metal-poor star CS 31082-001,” Astronomy and Astrophysics, vol. 550, article A122, 17 pages, 2013. View at Publisher · View at Google Scholar
  56. C. C. Worley, V. Hill, J. Sobeck, and E. Carretta, “Ba and Eu abundances in M 15 giant stars,” Astronomy and Astrophysics, vol. 553, article A47, 20 pages, 2013. View at Publisher · View at Google Scholar
  57. A. Coc, E. Vangioni-Flam, P. Descouvemont, A. Adahchour, and C. Angulo, “Updated big bang nucleosynthesis compared with Wilkinson microwave anisotropy probe observations and the abundance of light elements,” The Astrophysical Journal Letters, vol. 600, no. 2, pp. 544–552, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. R. H. Cyburt, B. D. Fields, K. A. Olive, and JCAP, “An update on the big bang nucleosynthesis prediction for 7Li: the problem worsens,” Journal of Cosmology and Astroparticle Physics, vol. 2008, no. 11, article 12, 2008. View at Publisher · View at Google Scholar
  59. A. J. Korn, F. Grundahl, O. Richard et al., “A probable stellar solution to the cosmological lithium discrepancy,” Nature, vol. 442, pp. 657–659, 2006. View at Publisher · View at Google Scholar