Table of Contents Author Guidelines Submit a Manuscript
Journal of Botany
Volume 2012, Article ID 137037, 6 pages
http://dx.doi.org/10.1155/2012/137037
Research Article

The Role of Pathogenesis-Related Proteins in the Tomato-Rhizoctonia solani Interaction

Department of Crop Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 1163, Mashhad 9177948978, Iran

Received 19 September 2011; Accepted 19 December 2011

Academic Editor: Olivier Honnay

Copyright © 2012 Parissa Taheri and Saeed Tarighi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Fakhro, D. R. Andrade-Linares, S. von Bargen et al., “Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens,” Mycorrhiza, vol. 20, no. 3, pp. 191–200, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Pharand, O. Carisse, and N. Benhamou, “Cytological aspects of compost-mediated induced resistance against Fusarium crown and root rot in tomato,” Phytopathology, vol. 92, no. 4, pp. 424–438, 2002. View at Google Scholar · View at Scopus
  3. J. Webster and R. W. S. Weber, Inrtoduction to Fungi, Cambridge University Press, 3rd edition, 2007.
  4. D. E. Carling, “Grouping in Rhizoctonia solani by hyphal anastomosis,” in Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control, B. Sneh, S. Jabaji-Hare, S. Neate, and G. Dijst, Eds., pp. 37–47, Kluwer Academic, Dordrecht, The Netherlands, 1996. View at Google Scholar
  5. D. E. Carling, R. E. Baird, R. D. Gitaitis, K. A. Brainard, and S. Kuninaga, “Characterization of AG-13, a newly reported anastomosis group of Rhizoctonia solani,” Phytopathology, vol. 92, no. 8, pp. 893–899, 2002. View at Google Scholar · View at Scopus
  6. S. Kuninaga, R. Yokosawa, and A. Ogoshi, “Some properties of anastomosis group 6 and BI in Rhizoctonia solani Kuhn,” Annals of the Phytopathological Society of Japan, vol. 45, no. 2, pp. 207–214, 1979. View at Google Scholar
  7. B. Sneh, L. Burpee, and A. Ogoshi, Identification of Rhizoctonia Species, The American Phytopathological Society Press, St. Paul, Minn, USA, 1991.
  8. T. Misawa and S. Kuninaga, “The first report of tomato foot rot caused by Rhizoctonia solani AG-3 PT and AG-2-Nt and its host range and molecular characterization,” Journal of General Plant Pathology, vol. 76, no. 5, pp. 310–319, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. E. E. Kuramae, A. L. Buzeto, M. B. Ciampi, and N. L. Souza, “Identification of Rhizoctonia solani AG 1-IB in lettuce, AG 4 HG-I in tomato and melon, and AG 4 HG-III in broccoli and spinach, in Brazil,” European Journal of Plant Pathology, vol. 109, no. 4, pp. 391–395, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. L. C. Van Loon, M. Rep, and C. M. J. Pieterse, “Significance of inducible defense-related proteins in infected plants,” Annual Review of Phytopathology, vol. 44, pp. 135–162, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Benhamou, M. H. A. J. Joosten, and P. J. G. M. De Wit, “Subcellular localization of chitinase and of its potential substrate in tomato root tissues infected by Fusarium oxysporum f. sp. Radicis-lycopersici,” Plant Physiology, vol. 92, no. 4, pp. 1108–1120, 1990. View at Google Scholar · View at Scopus
  12. N. Danhash, C. A. M. Wagemakers, J. A. L. van Kan, and P. J. G. M. de Wit, “Molecular characterization of four chitinase cDNAs obtained from Cladosporium fulvum-infected tomato,” Plant Molecular Biology, vol. 22, no. 6, pp. 1017–1029, 1993. View at Publisher · View at Google Scholar · View at Scopus
  13. J. P. Wubben, C. B. Lawrence, and P. J. G. M. De Wit, “Differential induction of chitinase and 1,3-β-glucanase gene expression in tomato by Cladosporium fulvum and its race-specific elicitors,” Physiological and Molecular Plant Pathology, vol. 48, no. 2, pp. 105–116, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Taheri and S. Tarighi, “Cytomolecular aspects of rice sheath blight caused by Rhizoctonia solani,” European Journal of Plant Pathology, vol. 129, no. 4, pp. 511–528, 2011. View at Google Scholar
  15. S. Lurie, E. Fallik, A. Handros, and R. Shapira, “The possible involvement of peroxidase in resistance to Botrytis cinerea in heat treated tomato fruit,” Physiological and Molecular Plant Pathology, vol. 50, no. 3, pp. 141–149, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. C. M. Rick and J. I. Yoder, “Classical and molecular genetics of tomato: highlights and perspectives,” Annual Review of Genetics, vol. 22, pp. 281–300, 1988. View at Google Scholar · View at Scopus
  17. A. Yildiz and M. Timur Döken, “Anastomosis group determination of Rhizoctonia solani Kühn (Telemorph: Thanatephorus cucumeris) isolates from tomatoes grown in Aydin, Turkey and their disease reaction on various tomato cultivars,” Journal of Phytopathology, vol. 150, no. 10, pp. 526–528, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Schmidt, B. Heberle, J. Kurrasch, R. Nehls, and D. J. Stahl, “Suppression of phenylalanine ammonia lyase expression in sugar beet by the fungal pathogen Cercospora beticola is mediated at the core promoter of the gene,” Plant Molecular Biology, vol. 55, no. 6, pp. 835–852, 2004. View at Google Scholar · View at Scopus
  19. M. A. Doster and R. M. Bostock, “Effects of low temperature on resistance of almond trees to Phytophthora pruning wound cankers in relation to lignin and suberin formation in wounded bark tissues,” Phytopathology, vol. 78, no. 4, pp. 478–483, 1988. View at Google Scholar
  20. M. M. Campbell and B. E. Ellis, “Fungal elicitor-mediated responses in pine cell cultures—I. Induction of phenylpropanoid metabolism,” Planta, vol. 186, no. 3, pp. 409–417, 1992. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Taheri and S. Tarighi, “Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway,” Journal of Plant Physiology, vol. 167, no. 3, pp. 201–208, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Sareena, K. Poovannan, K. K. Kumar et al., “Biochemical responses in transgenic rice plants expressing a defence gene deployed against the sheath blight pathogen, Rhizoctonia solani,” Current Science, vol. 91, no. 11, pp. 1529–1532, 2006. View at Google Scholar · View at Scopus
  23. B. Mauch-Mani and A. J. Slusarenko, “Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of arabidopsis to Peronospora parasitica,” Plant Cell, vol. 8, no. 2, pp. 203–212, 1996. View at Google Scholar · View at Scopus
  24. P. Taheri and S. Tarighi, “A survey on basal resistance and riboflavin-induced defense responses of sugar beet against Rhizoctonia solani,” Journal of Plant Physiology, vol. 168, no. 3, pp. 1114–1122, 2011. View at Google Scholar
  25. S. C. Chen, A. R. Liu, F. H. Wang, and G. J. Ahammed, “Combined overexpression of chitinase and defensin genesin transgenic tomato enhances resistance to Botrytis cinerea,” African Journal of Biotechnology, vol. 8, no. 20, pp. 5182–5188, 2009. View at Google Scholar · View at Scopus
  26. G. Sridevi, C. Parameswari, N. Sabapathi, V. Raghupathy, and K. Veluthambi, “Combined expression of chitinase and β-1,3-glucanase genes in indica rice (Oryza sativa L.) enhances resistance against Rhizoctonia solani,” Plant Science, vol. 175, no. 3, pp. 283–290, 2008. View at Publisher · View at Google Scholar · View at Scopus