Table of Contents Author Guidelines Submit a Manuscript
Journal of Botany
Volume 2012 (2012), Article ID 217037, 26 pages
http://dx.doi.org/10.1155/2012/217037
Review Article

Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions

1Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
2Crop Development Centre, Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon SK, SK, Canada S7N 5A8
3School of Plant Sciences, The University of Arizona, Forbes Building, Room 303, P.O. Box 210036, Tucson, AZ 85721-0036, USA

Received 6 August 2011; Revised 12 February 2012; Accepted 12 February 2012

Academic Editor: Andrea Polle

Copyright © 2012 Pallavi Sharma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. H. Foyer and J. Harbinson, “Oxygen metabolism and the regulation of photosynthetic electron transport,” in Causes of Photooxidative Stresses and Amelioration of Defense Systems in Plants, C. H. Foyer and P. Mullineaux, Eds., pp. 1–42, CRC Press, Boca Raton, Fla, USA, 1994. View at Google Scholar
  2. C. H. Foyer, “Oxygen metabolism and electron transport in photosynthesis,” in Molecular Biology of Free Radical Scavenging Systems, J. Scandalios, Ed., pp. 587–621, Cold Spring Harbor Laboratory Press, New York, NY, USA, 1997. View at Google Scholar
  3. L. A. Del Río, L. M. Sandalio, F. J. Corpas, J. M. Palma, and J. B. Barroso, “Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling,” Plant Physiology, vol. 141, no. 2, pp. 330–335, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. O. Blokhina and K. V. Fagerstedt, “Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems,” Physiologia Plantarum, vol. 138, no. 4, pp. 447–462, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Heyno, V. Mary, P. Schopfer, and A. Krieger-Liszkay, “Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes,” Planta, vol. 234, no. 1, pp. 35–45, 2011. View at Publisher · View at Google Scholar
  6. K. Shah, R. G. Kumar, S. Verma, and R. S. Dubey, “Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings,” Plant Science, vol. 161, no. 6, pp. 1135–1144, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Mittler, “Oxidative stress, antioxidants and stress tolerance,” Trends in Plant Science, vol. 7, no. 9, pp. 405–410, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Sharma and R. S. Dubey, “Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings,” Plant Growth Regulation, vol. 46, no. 3, pp. 209–221, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. W. H. Hu, X. S. Song, K. Shi, X. J. Xia, Y. H. Zhou, and J. Q. Yu, “Changes in electron transport, superoxide dismutase and ascorbate peroxidase isoenzymes in chloroplasts and mitochondria of cucumber leaves as influenced by chilling,” Photosynthetica, vol. 46, no. 4, pp. 581–588, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Han, Q. Liu, and Y. Yang, “Short-term effects of experimental warming and enhanced ultraviolet-B radiation on photosynthesis and antioxidant defense of Picea asperata seedlings,” Plant Growth Regulation, vol. 58, no. 2, pp. 153–162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Maheshwari and R. S. Dubey, “Nickel-induced oxidative stress and the role of antioxidant defence in rice seedlings,” Plant Growth Regulation, vol. 59, no. 1, pp. 37–49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Tanou, A. Molassiotis, and G. Diamantidis, “Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity,” Environmental and Experimental Botany, vol. 65, no. 2-3, pp. 270–281, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Mishra, A. B. Jha, and R. S. Dubey, “Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings,” Protoplasma, vol. 248, no. 3, pp. 565–577, 2011. View at Publisher · View at Google Scholar
  14. S. Srivastava and R. S. Dubey, “Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings,” Plant Growth Regulation, pp. 1–16, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Sharma and R. S. Dubey, “Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum,” Plant Cell Reports, vol. 26, no. 11, pp. 2027–2038, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Verma and R. S. Dubey, “Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants,” Plant Science, vol. 164, no. 4, pp. 645–655, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Meriga, B. K. Reddy, K. R. Rao, L. A. Reddy, and P. B. K. Kishor, “Aluminium-induced production of oxygen radicals, lipid peroxidation and DNA damage in seedlings of rice (Oryza sativa),” Journal of Plant Physiology, vol. 161, no. 1, pp. 63–68, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Desikan, S. A.-H.-Mackerness S., J. T. Hancock, and S. J. Neill, “Regulation of the Arabidopsis transcriptome by oxidative stress,” Plant Physiology, vol. 127, no. 1, pp. 159–172, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Neill, R. Desikan, and J. Hancock, “Hydrogen peroxide signalling,” Current Opinion in Plant Biology, vol. 5, no. 5, pp. 388–395, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Yan, N. Tsuichihara, T. Etoh, and S. Iwai, “Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening,” Plant, Cell and Environment, vol. 30, no. 10, pp. 1320–1325, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Noctor and C. H. Foyer, “Ascorbate and glutathione: keeping active oxygen under control,” Annual Review of Plant Biology, vol. 49, pp. 249–279, 1998. View at Google Scholar
  22. M. Zaefyzadeh, R. A. Quliyev, S. M. Babayeva, and M. A. Abbasov, “The effect of the interaction between genotypes and drought stress on the superoxide dismutase and chlorophyll content in durum wheat landraces,” Turkish Journal of Biology, vol. 33, no. 1, pp. 1–7, 2009. View at Google Scholar · View at Scopus
  23. Q. Chen, M. Zhang, and S. Shen, “Effect of salt on malondialdehyde and antioxidant enzymes in seedling roots of Jerusalem artichoke (Helianthus tuberosus L.),” Acta Physiologiae Plantarum, vol. 33, no. 2, pp. 273–278, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. R. D. Allen, R. P. Webb, and S. A. Schake, “Use of transgenic plants to study antioxidant defenses,” Free Radical Biology and Medicine, vol. 23, no. 3, pp. 473–479, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Faize, L. Burgos, L. Faize et al., “Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress,” Journal of Experimental Botany, vol. 62, no. 8, pp. 2599–2613, 2011. View at Publisher · View at Google Scholar
  26. Y. P. Lee, S. H. Kim, J. W. Bang, H. S. Lee, S. S. Kwak, and S. Y. Kwon, “Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts,” Plant Cell Reports, vol. 26, no. 5, pp. 591–598, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Asada and M. Takahashi, “Production and scavenging of active oxygen in photosynthesis,” in Photoinhibition: Topics of Photosynthesis, D. J. Kyle, C. B. Osmond, and C. J. Arntzen, Eds., pp. 227–287, Elsevier, Amsterdam, The Netherlands, 9th edition, 1987. View at Google Scholar
  28. K. Apel and H. Hirt, “Reactive oxygen species: metabolism, oxidative stress, and signal transduction,” Annual Review of Plant Biology, vol. 55, pp. 373–399, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Krieger-Liszkay, “Singlet oxygen production in photosynthesis,” Journal of Experimental Botany, vol. 56, no. 411, pp. 337–346, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Hatz, J. D. C. Lambert, and P. R. Ogilby, “Measuring the lifetime of singlet oxygen in a single cell: addressing the issue of cell viability,” Photochemical and Photobiological Sciences, vol. 6, no. 10, pp. 1106–1116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Hackbarth, J. Schlothauer, A. Preuß, and B. Röder, “New insights to primary photodynamic effects—singlet oxygen kinetics in living cells,” Journal of Photochemistry and Photobiology B, vol. 98, no. 3, pp. 173–179, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Wagner, D. Przybyla, R. Op Den Camp et al., “The genetic basis of singlet oxygen-induced stress response of Arabidopsis thaliana,” Science, vol. 306, no. 5699, pp. 1183–1185, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Kasai, “Analysis of a form of oxidative DNA damage, 8-hydroxy-2'-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis,” Mutation Research, vol. 387, no. 3, pp. 147–163, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Krieger-Liszkay, C. Fufezan, and A. Trebst, “Singlet oxygen production in photosystem II and related protection mechanism,” Photosynthesis Research, vol. 98, no. 1-3, pp. 551–564, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Halliwell and J. M. C. Gutteridge, “Oxygen toxicity, oxygen radicals, transition metals and disease,” Biochemical Journal, vol. 219, no. 1, pp. 1–14, 1984. View at Google Scholar · View at Scopus
  36. M. Valko, H. Morris, and M. T. D. Cronin, “Metals, toxicity and oxidative stress,” Current Medicinal Chemistry, vol. 12, no. 10, pp. 1161–1208, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. B. Halliwell, “Generation of hydrogen peroxide, superoxide and hydroxyl radicals during the oxidation of dihydroxyfumaric acid by peroxidase,” Biochemical Journal, vol. 163, no. 3, pp. 441–448, 1977. View at Google Scholar · View at Scopus
  38. J. A. Imlay, “Pathways of oxidative damage,” Annual Review of Microbiology, vol. 57, pp. 395–418, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. J. M. McCord, J. D. Crapo, and I. Fridovich, “Superoxide dismutase assay. a review of methodology,” in Superoxide and Superoxide Dismutase, A. M. Michelson, J. M. McCord, and I. Fridovich, Eds., pp. 11–17, Academic press, London, UK, 1977. View at Google Scholar
  40. R. Mittler and B. A. Zilinskas, “Purification and characterization of pea cytosolic ascorbate peroxidase,” Plant Physiology, vol. 97, no. 3, pp. 962–968, 1991. View at Google Scholar · View at Scopus
  41. G. P. Bienert, A. L. B. Møller, K. A. Kristiansen et al., “Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes,” Journal of Biological Chemistry, vol. 282, no. 2, pp. 1183–1192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. M. A. Torres, J. L. Dangl, and J. D. G. Jones, “Arabidopsis gp91phox homologues Atrbohd and Atrbohf are required for accumulation of reactive oxygen intermediates in the plant defense response,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 1, pp. 517–522, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, Oxford, UK, 2rd edition, 1989.
  44. W. M. Kaiser, “Reversible inhibition of the calvin cycle and activation of oxidative pentose phosphate cycle in isolated intact chloroplasts by hydrogen peroxide,” Planta, vol. 145, no. 4, pp. 377–382, 1979. View at Publisher · View at Google Scholar · View at Scopus
  45. R. C. Leegood and D. A. Walker, “Regulation of fructose-1,6-bisphosphatase activity in leaves,” Planta, vol. 156, no. 5, pp. 449–456, 1982. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Dat, S. Vandenabeele, E. Vranová, M. Van Montagu, D. Inzé, and F. Van Breusegem, “Dual action of the active oxygen species during plant stress responses,” Cellular and Molecular Life Sciences, vol. 57, no. 5, pp. 779–795, 2000. View at Publisher · View at Google Scholar
  47. A. Rigo, R. Stevanato, A. Finazzi Agro', and G. Rotilio, “An attempt to evaluate the rate of the Haber Weiss reaction by using OH radical scavengers,” FEBS Letters, vol. 80, no. 1, pp. 130–132, 1977. View at Publisher · View at Google Scholar · View at Scopus
  48. C. H. Foyer, H. Lopez-Delgado, J. F. Dat, and I. M. Scott, “Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling,” Physiologia Plantarum, vol. 100, no. 2, pp. 241–254, 1997. View at Publisher · View at Google Scholar · View at Scopus
  49. E. Pinto, T. C. S. Sigaud-Kutner, M. A. S. Leitão, O. K. Okamoto, D. Morse, and P. Colepicolo, “Heavy metal-induced oxidative stress in algae,” Journal of Phycology, vol. 39, no. 6, pp. 1008–1018, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. H. Ishida, Y. Nishimori, M. Sugisawa, A. Makino, and T. Mae, “The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is fragmented into 37-kDa and 16-kDa polypeptides by active oxygen in the lysates of chloroplasts from primary leaves of wheat,” Plant and Cell Physiology, vol. 38, no. 4, pp. 471–479, 1997. View at Google Scholar · View at Scopus
  51. S. Luo, H. Ishida, A. Makino, and T. Mae, “Fe2+-catalyzed site-specific cleavage of the large subunit of ribulose 1,5-bisphosphate carboxylase close to the active site,” Journal of Biological Chemistry, vol. 277, no. 14, pp. 12382–12387, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. E. F. Elstner, “Oxygen activation and oxygen toxicity,” Annual Review of Plant Biology, vol. 33, pp. 73–96, 1982. View at Google Scholar
  53. E. F. Elstner, “Metabolism of activated oxygen species,” in Biochemistry of Plants, D. D. Davies, Ed., pp. 253–315, Academic Press, London, UK, 1987. View at Google Scholar
  54. E. F. Elstner, “Mechanisms of oxygen activation in different compartments of plant cells,” in Active Oxygen/Oxidative Stress and Plant Metabolism, E. J. Pell and K. L. Steffen, Eds., pp. 13–25, American Society of Plant Physiologists, Rockville, Md, USA, 1991. View at Google Scholar
  55. R. E. Cleland and S. C. Grace, “Voltammetric detection of superoxide production by photosystem II,” FEBS Letters, vol. 457, no. 3, pp. 348–352, 1999. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Arora, R. K. Sairam, and G. C. Srivastava, “Oxidative stress and antioxidative system in plants,” Current Science, vol. 82, no. 10, pp. 1227–1238, 2002. View at Google Scholar · View at Scopus
  57. J. F. Turrens, “Mitochondrial formation of reactive oxygen species,” Journal of Physiology, vol. 552, no. 2, pp. 335–344, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. M. P. Murphy, “How mitochondria produce reactive oxygen species,” Biochemical Journal, vol. 417, no. 1, pp. 1–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. G. Noctor, R. De Paepe, and C. H. Foyer, “Mitochondrial redox biology and homeostasis in plants,” Trends in Plant Science, vol. 12, no. 3, pp. 125–134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Y. Andreyev, Y. E. Kushnareva, and A. A. Starkov, “Mitochondrial metabolism of reactive oxygen species,” Biochemistry (Moscow), vol. 70, no. 2, pp. 200–214, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. A. G. Rasmusson, D. A. Geisler, and I. M. Møller, “The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria,” Mitochondrion, vol. 8, no. 1, pp. 47–60, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Baker and A. I. Graham, Plant Peroxisomes: Biochemistry, Cell Biology and Biotechnological Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002.
  63. G. Noctor, S. Veljovic-Jovanovic, S. Driscoll, L. Novitskaya, and C. H. Foyer, “Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration?” Annals of Botany, vol. 89, pp. 841–850, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. E. López-Huertas, F. J. Corpas, L. M. Sandalio, and L. A. Del Río, “Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation,” Biochemical Journal, vol. 337, no. 3, pp. 531–536, 1999. View at Publisher · View at Google Scholar · View at Scopus
  65. J. M. Kwak, I. C. Mori, Z. M. Pei et al., “NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis,” EMBO Journal, vol. 22, no. 11, pp. 2623–2633, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. G. G. Gross, “Cell wall-bound malate dehydrogenase from horseradish,” Phytochemistry, vol. 16, no. 3, pp. 319–321, 1977. View at Google Scholar · View at Scopus
  67. C. Martinez, J. L. Montillet, E. Bresson et al., “Apoplastic peroxidase generates superoxide anions in cells of cotton cotyledons undergoing the hypersensitive reaction to Xanthomonas campestris pv. malvacearum 18,” Molecular Plant-Microbe Interactions, vol. 11, no. 11, pp. 1038–1047, 1998. View at Google Scholar · View at Scopus
  68. M. J. Kim, S. Ciani, and D. P. Schachtman, “A peroxidase contributes to ros production during Arabidopsis root response to potassium deficiency,” Molecular Plant, vol. 3, no. 2, pp. 420–427, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. P. Wojtaszek, “Oxidative burst: an early plant response to pathogen infection,” Biochemical Journal, vol. 322, no. 3, pp. 681–692, 1997. View at Google Scholar · View at Scopus
  70. B. G. Lane, “Oxalate, germins, and higher-plant pathogens,” IUBMB Life, vol. 53, no. 2, pp. 67–75, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Cona, G. Rea, R. Angelini, R. Federico, and P. Tavladoraki, “Functions of amine oxidases in plant development and defence,” Trends in Plant Science, vol. 11, no. 2, pp. 80–88, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. P. C. Bethke and R. L. Jones, “Cell death of barley aleurone protoplasts is mediated by reactive oxygen species,” Plant Journal, vol. 25, no. 1, pp. 19–29, 2001. View at Publisher · View at Google Scholar · View at Scopus
  73. Jung Hee Joo, Yun Soo Bae, and June Seung Lee, “Role of auxin-induced reactive oxygen species in root gravitropism,” Plant Physiology, vol. 126, no. 3, pp. 1055–1060, 2001. View at Publisher · View at Google Scholar · View at Scopus
  74. G. Miller, V. Shulaev, and R. Mittler, “Reactive oxygen signaling and abiotic stress,” Physiologia Plantarum, vol. 133, no. 3, pp. 481–489, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. L. Xiong, K. S. Schumaker, and J. K. Zhu, “Cell signaling during cold, drought, and salt stress,” Plant Cell, vol. 14, pp. S165–S183, 2002. View at Google Scholar · View at Scopus
  76. Y. Cheng and C. Song, “Hydrogen peroxide homeostasis and signaling in plant cells,” Science in China. Series C, Life sciences, vol. 49, no. 1, pp. 1–11, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. Z. M. Pel, Y. Murata, G. Benning et al., “Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells,” Nature, vol. 406, no. 6797, pp. 731–734, 2000. View at Publisher · View at Google Scholar · View at Scopus
  78. R. Jannat, M. Uraji, M. Morofuji et al., “Roles of intracellular hydrogen peroxide accumulation in abscisic acid signaling in Arabidopsis guard cells,” Journal of Plant Physiology, vol. 168, no. 16, pp. 1919–1926, 2011. View at Publisher · View at Google Scholar
  79. E. Bahin, C. Bailly, B. Sotta, I. Kranner, F. Corbineau, and J. Leymarie, “Crosstalk between reactive oxygen species and hormonal signalling pathways regulates grain dormancy in barley,” Plant, Cell and Environment, vol. 34, no. 6, pp. 980–993, 2011. View at Publisher · View at Google Scholar
  80. A. K. Nanda, E. Andrio, D. Marino, N. Pauly, and C. Dunand, “Reactive oxygen species during plant-microorganism early interactions,” Journal of Integrative Plant Biology, vol. 52, no. 2, pp. 195–204, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. D. F. Klessig, J. Durner, R. Noad et al., “Nitric oxide and salicylic acid signaling in plant defense,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 16, pp. 8849–8855, 2000. View at Publisher · View at Google Scholar · View at Scopus
  82. M. L. Orozco-Cárdenas, J. Narváez-Vásquez, and C. A. Ryan, “Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate,” Plant Cell, vol. 13, no. 1, pp. 179–191, 2001. View at Publisher · View at Google Scholar · View at Scopus
  83. L. Denness, J. F. McKenna, C. Segonzac et al., “Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis,” Plant Physiology, vol. 156, no. 3, pp. 1364–1374, 2011. View at Publisher · View at Google Scholar
  84. T. Yuasa, K. Ichimura, T. Mizoguchi, and K. Shinozaki, “Oxidative stress activates ATMPK6, an Arabidopsis homologue of map kinase,” Plant and Cell Physiology, vol. 42, no. 9, pp. 1012–1016, 2001. View at Google Scholar · View at Scopus
  85. C. M. Yeh, P. S. Chien, and H. J. Huang, “Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots,” Journal of Experimental Botany, vol. 58, no. 3, pp. 659–671, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. O. Borsani, P. Díaz, M. F. Agius, V. Valpuesta, and J. Monza, “Water stress generates an oxidative stress through the induction of a specific Cu/Zn superoxide dismutase in Lotus corniculatus leaves,” Plant Science, vol. 161, no. 4, pp. 757–763, 2001. View at Publisher · View at Google Scholar · View at Scopus
  87. Z. Zhao, G. Chen, and C. Zhang, “Interaction between reactive oxygen species and nitric oxide in drought-induced abscisic acid synthesis in root tips of wheat seedlings,” Australian Journal of Plant Physiology, vol. 28, no. 10, pp. 1055–1061, 2001. View at Google Scholar · View at Scopus
  88. N. Smirnoff, “Antioxidant systems and plant response to the environment,” in Environment and Plant Metabolism: Flexibility and Acclimation, N. Smirnoff, Ed., pp. 217–243, Bios Scientific Publishers, Oxford, UK, 1995. View at Google Scholar
  89. R. O. Recknagal and E. A. Glende, “Oxygen radicals in biological systems,” in Methods in Enzymology, L. Packer, Ed., vol. 105, pp. 331–337, Academic Press, New York, NY, USA, 1984. View at Google Scholar
  90. K. J. A. Davies, “Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems,” IUBMB Life, vol. 50, no. 4-5, pp. 279–289, 2000. View at Publisher · View at Google Scholar · View at Scopus
  91. G. R. Buettner, “The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate,” Archives of Biochemistry and Biophysics, vol. 300, no. 2, pp. 535–543, 1993. View at Publisher · View at Google Scholar · View at Scopus
  92. Y. Yamauchi, A. Furutera, K. Seki, Y. Toyoda, K. Tanaka, and Y. Sugimoto, “Malondialdehyde generated from peroxidized linolenic acid causes protein modification in heat-stressed plants,” Plant Physiology and Biochemistry, vol. 46, no. 8-9, pp. 786–793, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. I. M. Møller and B. K. Kristensen, “Protein oxidation in plant mitochondria as a stress indicator,” Photochemical and Photobiological Sciences, vol. 3, no. 8, pp. 730–735, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. M. C. Romero-Puertas, J. M. Palma, M. Gómez, L. A. Del Río, and L. M. Sandalio, “Cadmium causes the oxidative modification of proteins in pea plants,” Plant, Cell and Environment, vol. 25, no. 5, pp. 677–686, 2002. View at Publisher · View at Google Scholar · View at Scopus
  95. S. J. Stohs and D. Bagchi, “Oxidative mechanisms in the toxicity of metal ions,” Free Radical Biology and Medicine, vol. 18, no. 2, pp. 321–336, 1995. View at Publisher · View at Google Scholar · View at Scopus
  96. N. Brot and H. Weissbach, “The biochemistry of methionine sulfoxide residues in proteins,” Trends in Biochemical Sciences, vol. 7, no. 4, pp. 137–139, 1982. View at Google Scholar · View at Scopus
  97. K. J. Davies, “Protein damage and degradation by oxygen radicals. I. general aspects,” Journal of Biological Chemistry, vol. 262, no. 20, pp. 9895–9901, 1987. View at Google Scholar · View at Scopus
  98. P. R. Gardner and I. Fridovich, “Superoxide sensitivity of the Escherichia coli 6-phosphogluconate dehydratase,” Journal of Biological Chemistry, vol. 266, no. 3, pp. 1478–1483, 1991. View at Google Scholar · View at Scopus
  99. E. R. Stadtman, “Oxidation of proteins by mixed-function oxidation systems: implication in protein turnover, ageing and neutrophil function,” Trends in Biochemical Sciences, vol. 11, no. 1, pp. 11–12, 1986. View at Google Scholar · View at Scopus
  100. E. Cabiscol, E. Piulats, P. Echave, E. Herrero, and J. Ros, “Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae,” Journal of Biological Chemistry, vol. 275, no. 35, pp. 27393–27398, 2000. View at Publisher · View at Google Scholar · View at Scopus
  101. T. Grune, T. Reinheckel, and K. J. A. Davies, “Degradation of oxidized proteins in mammalian cells,” FASEB Journal, vol. 11, no. 7, pp. 526–534, 1997. View at Google Scholar · View at Scopus
  102. J. A. Imlay and S. Linn, “DNA damage and oxygen radical toxicity,” Science, vol. 240, no. 4857, pp. 1302–1309, 1988. View at Google Scholar · View at Scopus
  103. T. Liu, J. Van Staden, and W. A. Cress, “Salinity induced nuclear and DNA degradation in meristematic cells of soybean (Glycine max (L.)) roots,” Plant Growth Regulation, vol. 30, no. 1, pp. 49–54, 2000. View at Publisher · View at Google Scholar · View at Scopus
  104. M. Dizdaroglu, “Chemistry of free radical damage to DNA and nucleoproteins,” in DNA and Free Radicals, B. Halliwell and O. I. Aruoma, Eds., pp. 19–39, Ellis Horwood, London, UK, 1993. View at Google Scholar
  105. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, Oxford, UK, 3rd edition, 1999.
  106. H. Tsuboi, K. Kouda, H. Takeuchi et al., “8-Hydroxydeoxyguanosine in urine as an index of oxidative damage to DNA in the evaluation of atopic dermatitis,” British Journal of Dermatology, vol. 138, no. 6, pp. 1033–1035, 1998. View at Publisher · View at Google Scholar · View at Scopus
  107. B. Halliwell and O. I. Aruoma, “DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems,” FEBS Letters, vol. 281, no. 1-2, pp. 9–19, 1991. View at Publisher · View at Google Scholar · View at Scopus
  108. S. P. Fink, G. R. Reddy, and L. J. Marnett, “Mutagenicity in Escherichia coli of the major DNA adduct derived from the endogenous mutagen malondialdehyde,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 16, pp. 8652–8657, 1997. View at Publisher · View at Google Scholar · View at Scopus
  109. M. D. Evans, M. Dizdaroglu, and M. S. Cooke, “Oxidative DNA damage and disease: induction, repair and significance,” Mutation Research, vol. 567, no. 1, pp. 1–61, 2004. View at Publisher · View at Google Scholar · View at Scopus
  110. N. L. Oleinick, Song-mao Chiu, N. Ramakrishnan, and Liang-yan Xue, “The formation, identification, and significance of DNA-protein cross-links in mammalian cells,” British Journal of Cancer, supplement, vol. 8, pp. 135–140, 1987. View at Google Scholar
  111. C. Richter, “Reactive oxygen and DNA damage in mitochondria,” Mutation Research, DNAging Genetic Instability and Aging, vol. 275, no. 3-6, pp. 249–255, 1992. View at Publisher · View at Google Scholar · View at Scopus
  112. C. H. Pang and B. S. Wang, “Oxidative stress and salt tolerance in plants,” in Progress in Botany, U. Lüttge, W. Beyschlag, and J. Murata, Eds., pp. 231–245, Springer, Berlin, Germany, 2008. View at Google Scholar
  113. P. Sharma, A. B. Jha, and R. S. Dubey, “Oxidative stress and antioxidative defense system in plants growing under abiotic Stresses,” in Handbook of Plant and Crop Stress, M. Pessarakli, Ed., pp. 89–138, CRC Press, Taylor and Francis Publishing Company, Fla, USA, 3rd edition, 2010. View at Google Scholar
  114. M. C. De Pinto and L. De Gara, “Changes in the ascorbate metabolism of apoplastic and symplastic spaces are associated with cell differentiation,” Journal of Experimental Botany, vol. 55, no. 408, pp. 2559–2569, 2004. View at Publisher · View at Google Scholar · View at Scopus
  115. Q. Gao and L. Zhang, “Ultraviolet-B-induced oxidative stress and antioxidant defense system responses in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana,” Journal of Plant Physiology, vol. 165, no. 2, pp. 138–148, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. N. M. Semchuk, O. V. Lushchak, J. Falk, K. Krupinska, and V. I. Lushchak, “Inactivation of genes, encoding tocopherol biosynthetic pathway enzymes, results in oxidative stress in outdoor grown Arabidopsis thaliana,” Plant Physiology and Biochemistry, vol. 47, no. 5, pp. 384–390, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. G. L. Wheeler, M. A. Jones, and N. Smirnoff, “The biosynthetic pathway of vitamin C in higher plants,” Nature, vol. 393, no. 6683, pp. 365–369, 1998. View at Publisher · View at Google Scholar · View at Scopus
  118. F. A. Isherwood, Y. T. Chen, and L. W. Mapson, “Synthesis of L-ascorbic acid in plants and animals,” The Biochemical Journal, vol. 56, no. 1, pp. 1–15, 1954. View at Google Scholar · View at Scopus
  119. H. B. Shao, L. Y. Chu, Z. H. Lu, and C. M. Kang, “Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells,” International Journal of Biological Sciences, vol. 4, no. 1, pp. 8–14, 2008. View at Google Scholar · View at Scopus
  120. N. Smirnoff, J. A. Running, and S. Gatzek, “Ascorbate biosynthesis: a diversity of pathways,” in Vitamin C: Its Functions and Biochemistry in Animals and Plants, H. Asard, J. M. May, and N. Smirnoff, Eds., pp. 7–29, BIOS Scientific, New York, NY, USA, 2004. View at Google Scholar
  121. J. D. Barnes, Y. Zheng, and T. M. Lyons, “Plant resistance to ozone: the role of ascorbate,” in Air Pollution and Plant Biotechnology, K. Omasa, H. Saji, S. Youssefian, and N. Kondo, Eds., pp. 235–254, Springer, Tokyo, Japan, 2002. View at Google Scholar
  122. N. Smirnoff, “Ascorbic acid: metabolism and functions of a multi-facetted molecule,” Current Opinion in Plant Biology, vol. 3, no. 3, pp. 229–235, 2000. View at Publisher · View at Google Scholar · View at Scopus
  123. C. Miyake and K. Asada, “Ferredoxin-dependent photoreduction of the monodehydroascorbate radical in spinach thylakoids,” Plant and Cell Physiology, vol. 35, no. 4, pp. 539–549, 1994. View at Google Scholar · View at Scopus
  124. K. Asada, “Radical production and scavenging in the chloroplasts,” in Photosynthesis and the Environment, N. R. Baker, Ed., pp. 123–150, Kluwer, Dordrecht, The Netherlands, 1996. View at Google Scholar
  125. J. A. Hernández, M. A. Ferrer, A. Jiménez, A. R. Barceló, and F. Sevilla, “Antioxidant systems and O2·/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins,” Plant Physiology, vol. 127, no. 3, pp. 817–831, 2001. View at Publisher · View at Google Scholar
  126. M. S. Radyuk, I. N. Domanskaya, R. A. Shcherbakov, and N. V. Shalygo, “Effect of low above-zero temperature on the content of low-molecular antioxidants and activities of antioxidant enzymes in green barley leaves,” Russian Journal of Plant Physiology, vol. 56, no. 2, pp. 175–180, 2009. View at Publisher · View at Google Scholar · View at Scopus
  127. M. M. Chaves, J. S. Pereira, J. Maroco et al., “How plants cope with water stress in the field. Photosynthesis and growth,” Annals of Botany, vol. 89, pp. 907–916, 2002. View at Publisher · View at Google Scholar · View at Scopus
  128. C. Zhang, J. Liu, Y. Zhang et al., “Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato,” Plant Cell Reports, vol. 30, no. 3, pp. 389–398, 2011. View at Publisher · View at Google Scholar · View at Scopus
  129. Hemavathi, C. P. Upadhyaya, K. E. Young et al., “Over-expression of strawberry d-galacturonic acid reductase in potato leads to accumulation of vitamin C with enhanced abiotic stress tolerance,” Plant Science, vol. 177, no. 6, pp. 659–667, 2009. View at Publisher · View at Google Scholar · View at Scopus
  130. Z. Wang, Y. Xiao, W. Chen, K. Tang, and L. Zhang, “Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis,” Journal of Integrative Plant Biology, vol. 52, no. 4, pp. 400–409, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. C. H. Foyer and G. Noctor, “Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria,” Physiologia Plantarum, vol. 119, no. 3, pp. 355–364, 2003. View at Publisher · View at Google Scholar · View at Scopus
  132. K. Asada, “Production and action of active oxygen species in photosynthetic tissues,” in Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants, C. H. Foyer and P. M. Mullineaux, Eds., pp. 77–104, CRC Press, Boca Raton, Fla, USA, 1994. View at Google Scholar
  133. F. A. Loewus, “Ascorbic acid and its metabolic products,” in The Biochemistry of Plants, J. Preiss, Ed., pp. 85–107, ,Academic Press, New York, NY, USA, 1988. View at Google Scholar
  134. C. H. Foyer and B. Halliwell, “The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism,” Planta, vol. 133, no. 1, pp. 21–25, 1976. View at Publisher · View at Google Scholar · View at Scopus
  135. M. Tausz, H. Šircelj, and D. Grill, “The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid?” Journal of Experimental Botany, vol. 55, no. 404, pp. 1955–1962, 2004. View at Publisher · View at Google Scholar · View at Scopus
  136. M. Hefny and D. Z. Abdel-Kader, “Antioxidant-enzyme system as selection criteria for salt tolerance in forage sorghum genotypes (Sorghum bicolor L. Moench),” in Salinity and Water Stress, M. Ashraf, M. Ozturk, and H. R. Athar, Eds., pp. 25–36, Springer, The Netherlands, 2009. View at Google Scholar
  137. M. Strohm, M. Eiblmeier, C. Langebartels et al., “Responses of transgenic poplar (Populus tremula × P. alba) overexpressing glutathione synthetase or glutathione reductase to acute ozone stress: visible injury and leaf gas exchange,” Journal of Experimental Botany, vol. 50, no. 332, pp. 365–374, 1999. View at Google Scholar · View at Scopus
  138. C. H. Foyer, N. Souriau, S. Perret et al., “Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees,” Plant Physiology, vol. 109, no. 3, pp. 1047–1057, 1995. View at Google Scholar · View at Scopus
  139. Y. L. Zhu, E. A. H. Pilon-Smits, A. S. Tarun, S. U. Weber, L. Jouanin, and N. Terry, “Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase,” Plant Physiology, vol. 121, no. 4, pp. 1169–1177, 1999. View at Google Scholar · View at Scopus
  140. G. Gullner, T. Kömives, and H. Rennenberg, “Enhanced tolerance of transgenic poplar plants overexpressing γ-glutamylcysteine synthetase towards chloroacetanilide herbicides,” Journal of Experimental Botany, vol. 52, no. 358, pp. 971–979, 2001. View at Google Scholar · View at Scopus
  141. A. E. Eltayeb, S. Yamamoto, M. E. E. Habora et al., “Greater protection against oxidative damages imposed by various environmental stresses in transgenic potato with higher level of reduced glutathione,” Breeding Science, vol. 60, no. 2, pp. 101–109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  142. T. Diplock, L. J. Machlin, L. Packer, and W. A. Pryor, “Vitamin E: biochemistry and health implications,” Annals of the New York Academy of Sciences, vol. 570, pp. 372–378, 1989. View at Google Scholar
  143. K. Fukuzawa, A. Tokumura, S. Ouchi, and H. Tsukatani, “Antioxidant activities of tocopherols on Fe2+-ascorbate-induced lipid peroxidation in lecithin liposomes,” Lipids, vol. 17, no. 7, pp. 511–514, 1982. View at Google Scholar · View at Scopus
  144. A. Kamal-Eldin and L. Å. Appelqvist, “The chemistry and antioxidant properties of tocopherols and tocotrienols,” Lipids, vol. 31, no. 7, pp. 671–701, 1996. View at Google Scholar · View at Scopus
  145. Y. Li, Y. Zhou, Z. Wang, X. Sun, and K. Tang, “Engineering tocopherol biosynthetic pathway in Arabidopsis leaves and its effect on antioxidant metabolism,” Plant Science, vol. 178, no. 3, pp. 312–320, 2010. View at Publisher · View at Google Scholar · View at Scopus
  146. B. N. Ivanov and S. Khorobrykh, “Participation of photosynthetic electron transport in production and scavenging of reactive oxygen species,” Antioxidants and Redox Signaling, vol. 5, no. 1, pp. 43–53, 2003. View at Google Scholar · View at Scopus
  147. M. J. Fryer, “The antioxidant effect of thylakoid vitamin-E (α-tocopherol),” Plant, Cell and Environment, vol. 15, no. 4, pp. 381–392, 1992. View at Google Scholar
  148. V. E. Kagan, J. P. Fabisiak, and P. J. Quinn, “Coenzyme Q and vitamin E need each other as antioxidants,” Protoplasma, vol. 214, no. 1-2, pp. 11–18, 2000. View at Google Scholar · View at Scopus
  149. K. Yamaguchi-Shinozaki and K. Shinozaki, “A novel cis element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress,” Plant Cell, vol. 6, no. 2, pp. 251–264, 1994. View at Publisher · View at Google Scholar · View at Scopus
  150. S. Munné-Bosch, K. Schwarz, and L. Alegre, “Enhanced formation of α-tocopherol and highly oxidized abietane diterpenes in water-stressed rosemary plants,” Plant Physiology, vol. 121, no. 3, pp. 1047–1052, 1999. View at Google Scholar
  151. J. Guo, X. Liu, X. Li, S. Chen, Z. Jin, and G. Liu, “Overexpression of VTE1 from Arabidopsis resulting in high vitamin E accumulation and salt stress tolerance increase in tobacco plant,” Chinese Journal of Applied and Environmental Biology, vol. 12, no. 4, pp. 468–471, 2006. View at Google Scholar · View at Scopus
  152. S. O. Bafeel and M. M. Ibrahim, “Antioxidants and accumulation of α-tocopherol induce chilling tolerance in Medicago sativa,” International Journal of Agriculture and Biology, vol. 10, no. 6, pp. 593–598, 2008. View at Google Scholar · View at Scopus
  153. S. Q. Ouyang, S. J. He, P. Liu, W. K. Zhang, J. S. Zhang, and S. Y. Chen, “The role of tocopherol cyclase in salt stress tolerance of rice (Oryza sativa),” Science China Life Sciences, vol. 54, no. 2, pp. 181–188, 2011. View at Publisher · View at Google Scholar
  154. J. Young, “The photoprotective role of carotenoids in higher plants,” Physiologia Plantarum, vol. 83, no. 4, pp. 702–708, 1991. View at Google Scholar
  155. D. Sieferman-Harms, “The light harvesting function of carotenoids in photosynthetic membrane,” Plant Physiology, vol. 69, no. 3, pp. 561–568, 1987. View at Google Scholar
  156. F. Li, R. Vallabhaneni, J. Yu, T. Rocheford, and E. T. Wurtzel, “The maize phytoene synthase gene family: overlapping roles for carotenogenesis in endosperm, photomorphogenesis, and thermal stress tolerance,” Plant Physiology, vol. 147, no. 3, pp. 1334–1346, 2008. View at Publisher · View at Google Scholar · View at Scopus
  157. R. Gomathi and P. Rakkiyapan, “Comparative lipid peroxidation, leaf membrane thermostability, and antioxidant system in four sugarcane genotypes differing in salt tolerance,” International Journal of Plant Physiology and Biochemistry, vol. 3, no. 4, pp. 67–74, 2011. View at Google Scholar
  158. S. G. Grace and B. A. Logan, “Energy dissipation and radical scavenging by the plant phenylpropanoid pathway,” Philosophical Transactions of the Royal Society B, vol. 355, no. 1402, pp. 1499–1510, 2000. View at Google Scholar · View at Scopus
  159. A. Arora, T. M. Byrem, M. G. Nair, and G. M. Strasburg, “Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids,” Archives of Biochemistry and Biophysics, vol. 373, no. 1, pp. 102–109, 2000. View at Publisher · View at Google Scholar · View at Scopus
  160. A. Michalak, “Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress,” Polish Journal of Environmental Studies, vol. 15, no. 4, pp. 523–530, 2006. View at Google Scholar · View at Scopus
  161. K. M. Janas, R. Amarowicz, J. Zielińska-Tomaszewska, A. Kosińska, and M. M. Posmyk, “Induction of phenolic compounds in two dark-grown lentil cultivars with different tolerance to copper ions,” Acta Physiologiae Plantarum, vol. 31, no. 3, pp. 587–595, 2009. View at Publisher · View at Google Scholar · View at Scopus
  162. R. Lois and B. B. Buchanan, “Severe sensitivity to ultraviolet radiation in an Arabidopsis mutant deficient in flavonoid accumulation. II.Mechanisms of UV-resistance in Arabidopsis,” Planta, vol. 194, no. 4, pp. 504–509, 1994. View at Google Scholar · View at Scopus
  163. M. Lukaszewicz, I. Matysiak-Kata, J. Skala, I. Fecka, W. Cisowski, and J. Szopa, “Antioxidant capacity manipulation in transgenic potato tuber by changes in phenolic compounds content,” Journal of Agricultural and Food Chemistry, vol. 52, no. 6, pp. 1526–1533, 2004. View at Publisher · View at Google Scholar · View at Scopus
  164. S. Sayfzadeh and M. Rashidi, “Response of antioxidant enzymes activities of sugar beet to drought stress,” ARPN Journal of Agricultural and Biological Science, vol. 6, no. 4, pp. 27–33, 2011. View at Google Scholar
  165. C. Sgherri, B. Stevanovic, and F. Navari-Izzo, “Role of phenolic acids during dehydration and rehydration of Ramonda serbica,” Physiologia Plantarum, vol. 122, no. 4, pp. 478–485, 2000. View at Google Scholar
  166. P. Mishra, B. Kumari, and R. S. Dubey, “Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings,” Protoplasma. In press. View at Publisher · View at Google Scholar
  167. R. Valderrama, F. J. Corpas, A. Carreras et al., “The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants,” Plant, Cell and Environment, vol. 29, no. 7, pp. 1449–1459, 2006. View at Publisher · View at Google Scholar · View at Scopus
  168. R. Mittal and R. S. Dubey, “Behaviour of peroxidases in rice: changes in enzymatic activity and isoforms in relation to salt tolerance,” Plant Physiology and Biochemistry, vol. 29, no. 1, pp. 31–40, 1991. View at Google Scholar
  169. M. J. Fryer, J. R. Andrews, K. Oxborough, D. A. Blowers, and N. R. Baker, “Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature,” Plant Physiology, vol. 116, no. 2, pp. 571–580, 1998. View at Google Scholar · View at Scopus
  170. Y. Zhang, Y. Luo, Y. X. Hou, H. Jiang, Q. Chen, and R. H. Tang, “Chilling acclimation induced changes in the distribution of H2O2 and antioxidant system of strawberry leaves,” Agricultural Journal, vol. 3, no. 4, pp. 286–291, 2008. View at Google Scholar
  171. I. Cakmak and W. J. Horst, “Effect of aluminium on lipid peroxidation, superoxide dismuatse, catalase, and peroxidase activities in root tips of soybean (Glycine max),” Physiologia Plantarum, vol. 83, no. 3, pp. 463–468, 1991. View at Google Scholar
  172. M. V. Rao, G. Paliyath, and D. P. Ormrod, “Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana,” Plant Physiology, vol. 110, no. 1, pp. 125–136, 1996. View at Google Scholar · View at Scopus
  173. N. A. Ashry and H. I. Mohamed, “Impact of secondary metabolites and related enzymes in flax resistance and/or susceptibility to powdery mildew,” African Journal of Biotechnology, vol. 11, no. 5, pp. 1073–1077, 2012. View at Publisher · View at Google Scholar
  174. D. E. M. Radwan, K. A. Fayez, S. Y. Mahmoud, and G. Lu, “Modifications of antioxidant activity and protein composition of bean leaf due to Bean yellow mosaic virus infection and salicylic acid treatments,” Acta Physiologiae Plantarum, vol. 32, no. 5, pp. 891–904, 2010. View at Publisher · View at Google Scholar · View at Scopus
  175. J. G. Scandalios, “Oxygen stress and superoxide dismutases,” Plant Physiology, vol. 101, no. 1, pp. 7–12, 1993. View at Google Scholar · View at Scopus
  176. I. Fridovich, “Superoxide dismutases. An adaptation to a paramagnetic gas,” Journal of Biological Chemistry, vol. 264, no. 14, pp. 7761–7764, 1989. View at Google Scholar · View at Scopus
  177. M. L. Racchi, F. Bagnoli, I. Balla, and S. Danti, “Differential activity of catalase and superoxide dismutase in seedlings and in vitro micropropagated oak (Quercus robur L.),” Plant Cell Reports, vol. 20, no. 2, pp. 169–174, 2001. View at Publisher · View at Google Scholar · View at Scopus
  178. C. Bowler, M. Van Montagu, and D. Inzé, “Superoxide dismutase and stress tolerance,” Annual Review of Plant Physiology and Plant Molecular Biology, vol. 43, no. 1, pp. 83–116, 1992. View at Google Scholar · View at Scopus
  179. C. Jackson, J. Dench, A. L. Moore, B. Halliwell, C. H. Foyer, and D. O. Hall, “Subcellular localisation and identification of superoxide dismutase in the leaves of higher plants,” European Journal of Biochemistry, vol. 91, no. 2, pp. 339–344, 1978. View at Google Scholar · View at Scopus
  180. S. Kanematsu and K. Asada, “Cuzn-superoxide dismutases in rice: occurrence of an active, monomeric enzyme and two types of isozyme in leaf and non-photosynthetic tissues,” Plant and Cell Physiology, vol. 30, no. 3, pp. 381–391, 1989. View at Google Scholar · View at Scopus
  181. P. Bueno, J. Varela, G. Gimenez-Gallego, and L. A. Del Rio, “Peroxisomal copper, zinc superoxide dismutase. Characterization of the isoenzyme from watermelon cotyledons,” Plant Physiology, vol. 108, no. 3, pp. 1151–1160, 1995. View at Google Scholar · View at Scopus
  182. L. A. Del Río, G. M. Pastori, J. M. Palma et al., “The activated oxygen role of peroxisomes in senescence,” Plant Physiology, vol. 116, no. 4, pp. 1195–1200, 1998. View at Google Scholar · View at Scopus
  183. A. S. Gupta, J. L. Heinen, A. S. Holaday, J. J. Burke, and R. D. Allen, “Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 4, pp. 1629–1633, 1993. View at Publisher · View at Google Scholar · View at Scopus
  184. G. Scandalios, L. Guan, and A. N. Polidoros, “Catalases in plants: gene structure, properties, regulation and expression,” in Oxidative Stress and the Molecular Biology of Antioxidants Defenses, J. G. Scandalios, Ed., pp. 343–406, Cold Spring Harbor Laboratory Press, New York, NY, USA, 1997. View at Google Scholar
  185. F. J. Corpas, J. M. Palma, L. M. Sandalio, R. Valderrama, J. B. Barroso, and L. A. del Río, “Peroxisomal xanthine oxidoreductase: characterization of the enzyme from pea (Pisum sativum L.) leaves,” Journal of Plant Physiology, vol. 165, no. 13, pp. 1319–1330, 2008. View at Publisher · View at Google Scholar · View at Scopus
  186. A. Mhamdi, G. Queval, S. Chaouch, S. Vanderauwera, F. Van Breusegem, and G. Noctor, “Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models,” Journal of Experimental Botany, vol. 61, no. 15, pp. 4197–4220, 2010. View at Publisher · View at Google Scholar · View at Scopus
  187. H. Willekens, D. Inze, M. Van Montagu, and W. Van Camp, “Catalases in plants,” Molecular Breeding, vol. 1, no. 3, pp. 207–228, 1995. View at Google Scholar · View at Scopus
  188. N. Mallick and F. H. Mohn, “Reactive oxygen species: response of algal cells,” Journal of Plant Physiology, vol. 157, no. 2, pp. 183–193, 2000. View at Google Scholar · View at Scopus
  189. R. Moussa and S. M Abdel-Aziz, “Comparative response of drought tolerant and drought sensitive maize genotypes to water stress,” Australian Journal of Crop Sciences, vol. 1, no. 1, pp. 31–36, 2008. View at Google Scholar
  190. H. Willekens, S. Chamnongpol, M. Davey et al., “Catalase is a sink for H2O2 and is indispensable for stress defence in C-3 plants,” EMBO Journal, vol. 16, no. 16, pp. 4806–4816, 1997. View at Publisher · View at Google Scholar · View at Scopus
  191. Z. Guan, T. Chai, Y. Zhang, J. Xu, and W. Wei, “Enhancement of Cd tolerance in transgenic tobacco plants overexpressing a Cd-induced catalase cDNA,” Chemosphere, vol. 76, no. 5, pp. 623–630, 2009. View at Publisher · View at Google Scholar · View at Scopus
  192. D. J. Schuller, N. Ban, R. B. Van Huystee, A. McPherson, and T. L. Poulos, “The crystal structure of peanut peroxidase,” Structure, vol. 4, no. 3, pp. 311–321, 1996. View at Google Scholar · View at Scopus
  193. K. Asada, “Ascorbate peroxidase: a hydrogen peroxide scavenging enzyme in plants,” Physiologia Plantarum, vol. 85, no. 2, pp. 235–241, 1992. View at Google Scholar
  194. K. Kobayashi, Y. Kumazawa, K. Miwa, and S. Yamanaka, “ε-(γ-Glutamyl)lysine cross-links of spore coat proteins and transglutaminase activity in Bacillus subtilis,” FEMS Microbiology Letters, vol. 144, no. 2-3, pp. 157–160, 1996. View at Publisher · View at Google Scholar · View at Scopus
  195. J. Vangronsveld and H. Clijsters, “Toxic effects of metals,” in Plants and the Chemical Elements. Biochemistry, Uptake, Tolerance and Toxicity, M. E. Farago, Ed., pp. 150–177, VCH Publishers, Weinheim, Germany, 1994. View at Google Scholar
  196. K. Radotić, T. Dučić, and D. Mutavdžić, “Changes in peroxidase activity and isoenzymes in spruce needles after exposure to different concentrations of cadmium,” Environmental and Experimental Botany, vol. 44, no. 2, pp. 105–113, 2000. View at Publisher · View at Google Scholar
  197. H. Tayefi-Nasrabadi, G. Dehghan, B. Daeihassani, A. Movafegi, and A. Samadi, “Some biochemical properties of guaiacol peroxidases as modified by salt stress in leaves of salt-tolerant and salt-sensitive safflower (Carthamus tinctorius L.cv.) cultivars,” African Journal of Biotechnology, vol. 10, no. 5, pp. 751–763, 2011. View at Google Scholar
  198. A. Jiménez, J. A. Hernández, L. A. Del Río, and F. Sevilla, “Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves,” Plant Physiology, vol. 114, no. 1, pp. 275–284, 1997. View at Google Scholar
  199. J. E. Pallanca and N. Smirnoff, “The control of ascorbic acid synthesis and turnover pea seedlings,” Journal of Experimental Botany, vol. 51, no. 345, pp. 669–674, 2000. View at Google Scholar · View at Scopus
  200. K. G. Welinder, “Superfamily of plant, fungal and bacterial peroxidases,” Current Opinion in Structural Biology, vol. 2, no. 3, pp. 388–393, 1992. View at Google Scholar · View at Scopus
  201. W. R. Patterson and T. L. Poulos, “Crystal structure of recombinant pea cytosolic ascorbate peroxidase,” Biochemistry, vol. 34, no. 13, pp. 4331–4341, 1995. View at Publisher · View at Google Scholar · View at Scopus
  202. R. Madhusudhan, T. Ishikawa, Y. Sawa, S. Shigeoka, and H. Shibata, “Characterization of an ascorbate peroxidase in plastids of tobacco BY-2 cells,” Physiologia Plantarum, vol. 117, no. 4, pp. 550–557, 2003. View at Publisher · View at Google Scholar · View at Scopus
  203. P. Sharma and R. S. Dubey, “Ascorbate peroxidase from rice seedlings: properties of enzyme isoforms, effects of stresses and protective roles of osmolytes,” Plant Science, vol. 167, no. 3, pp. 541–550, 2004. View at Publisher · View at Google Scholar · View at Scopus
  204. Y. Nakano and K. Asada, “Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical,” Plant and Cell Physiology, vol. 28, no. 1, pp. 131–140, 1987. View at Google Scholar · View at Scopus
  205. R. Mittler and B. A. Zilinskas, “Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase,” Journal of Biological Chemistry, vol. 267, no. 30, pp. 21802–21807, 1992. View at Google Scholar · View at Scopus
  206. T. Ishikawa, K. Yoshimura, K. Sakai, M. Tamoi, T. Takeda, and S. Shigeoka, “Molecular characterization and physiological role of a glyoxysome-bound ascorbate peroxidase from spinach,” Plant and Cell Physiology, vol. 39, no. 1, pp. 23–34, 1998. View at Google Scholar · View at Scopus
  207. J. Wang, H. Zhang, and R. D. Allen, “Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress,” Plant and Cell Physiology, vol. 40, no. 7, pp. 725–732, 1999. View at Google Scholar · View at Scopus
  208. Y. C. Boo and J. Jung, “Water deficit - Induced oxidative stress and antioxidative defenses in rice plants,” Journal of Plant Physiology, vol. 155, no. 2, pp. 255–261, 1999. View at Google Scholar · View at Scopus
  209. Y. Wang, M. Wisniewski, R. Meilan, M. Cui, R. Webb, and L. Fuchigami, “Overexpression of cytosolic ascorbate peroxidase in tomato confers tolerance to chilling and salt stress,” Journal of the American Society for Horticultural Science, vol. 130, no. 2, pp. 167–173, 2005. View at Google Scholar · View at Scopus
  210. Y. Yabuta, T. Motoki, K. Yoshimura, T. Takeda, T. Ishikawa, and S. Shigeoka, “Thylakoid membrane-bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress,” Plant Journal, vol. 32, no. 6, pp. 915–925, 2002. View at Publisher · View at Google Scholar · View at Scopus
  211. T. Ushimaru, Y. Maki, S. Sano, K. Koshiba, K. Asada, and H. Tsuji, “Induction of Enzymes Involved in the Ascorbate-Dependent Antioxidative System, Namely, Ascorbate Peroxidase, Monodehydroascorbate Reductase and Dehydroascorbate Reductase, after Exposure to Air of Rice (Oryza sativa) Seedlings Germinated under Water,” Plant and Cell Physiology, vol. 38, no. 5, pp. 541–549, 1997. View at Google Scholar · View at Scopus
  212. M. A. Hossain and K. Asada, “Monodehydroascorbate reductase from cucumber is a flavin adenine dinucleotide enzyme,” Journal of Biological Chemistry, vol. 260, no. 24, pp. 12920–12926, 1985. View at Google Scholar · View at Scopus
  213. Y. Sakihama, J. Mano, S. Sano, K. Asada, and H. Yamasaki, “Reduction of phenoxyl radicals mediated by monodehydroascorbate reductase,” Biochemical and Biophysical Research Communications, vol. 279, no. 3, pp. 949–954, 2000. View at Publisher · View at Google Scholar · View at Scopus
  214. M. A. Hossain, Y. Nakano, and K. Asada, “Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide,” Plant and Cell Physiology, vol. 25, no. 3, pp. 385–395, 1984. View at Google Scholar · View at Scopus
  215. D. A. Dalton, L. M. Baird, L. Langeberg et al., “Subcellular localization of oxygen defense enzymes in soybean (Glycine max [L.] Merr.) root nodules,” Plant Physiology, vol. 102, no. 2, pp. 481–489, 1993. View at Google Scholar · View at Scopus
  216. C. Miyake, U. Schreiber, H. Hormann, S. Sano, and K. Asada, “The FAD-enzyme monodehydroascorbate radical reductase mediates photoproduction of superoxide radicals in spinach thylakoid membranes,” Plant and Cell Physiology, vol. 39, no. 8, pp. 821–829, 1998. View at Google Scholar · View at Scopus
  217. A. E. Eltayeb, N. Kawano, G. H. Badawi et al., “Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses,” Planta, vol. 225, no. 5, pp. 1255–1264, 2007. View at Publisher · View at Google Scholar · View at Scopus
  218. F. Li, Q. Y. Wu, Y. L. Sun, L. Y. Wang, X. H. Yang, and Q. W. Meng, “Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methyl viologen-mediated oxidative stresses,” Physiologia Plantarum, vol. 139, no. 4, pp. 421–434, 2010. View at Publisher · View at Google Scholar · View at Scopus
  219. Z. Chen, T. E. Young, J. Ling, S. C. Chang, and D. R. Gallie, “Increasing vitamin C content of plants through enhanced ascorbate recycling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 6, pp. 3525–3530, 2003. View at Publisher · View at Google Scholar · View at Scopus
  220. A. Qin, Q. Shi, and X. Yu, “Ascorbic acid contents in transgenic potato plants overexpressing two dehydroascorbate reductase genes,” Molecular Biology Reports, vol. 38, no. 3, pp. 1557–1566, 2011. View at Publisher · View at Google Scholar
  221. M. A. Hossain and K. Asada, “Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme,” Plant and Cell Physiology, vol. 25, no. 1, pp. 85–92, 1984. View at Google Scholar · View at Scopus
  222. S. Dipierro and G. Borraccino, “Dehydroascorbate reductase from potato tubers,” Phytochemistry, vol. 30, no. 2, pp. 427–429, 1991. View at Google Scholar · View at Scopus
  223. S. Yoshida, M. Tamaoki, T. Shikano et al., “Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana,” Plant and Cell Physiology, vol. 47, no. 2, pp. 304–308, 2006. View at Publisher · View at Google Scholar · View at Scopus
  224. M. C. Rubio, P. Bustos-Sanmamed, M. R. Clemente, and M. Becana, “Effects of salt stress on the expression of antioxidant genes and proteins in the model legume Lotus japonicus,” New Phytologist, vol. 181, no. 4, pp. 851–859, 2009. View at Publisher · View at Google Scholar · View at Scopus
  225. A. E. Eltayeb, S. Yamamoto, M. E.E. Habora, L. Yin, H. Tsujimoto, and K. Tanaka, “Transgenic potato overexpressing Arabidopsis cytosolic AtDHAR1 showed higher tolerance to herbicide, drought and salt stresses,” Breeding Science, vol. 61, no. 1, pp. 3–10, 2011. View at Publisher · View at Google Scholar
  226. S. Ghisla and V. Massey, “Mechanisms of flavoprotein-catalyzed reactions,” European Journal of Biochemistry, vol. 181, no. 1, pp. 1–17, 1989. View at Google Scholar · View at Scopus
  227. E. A. Edwards, S. Rawsthorne, and P. M. Mullineaux, “Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.),” Planta, vol. 180, no. 2, pp. 278–284, 1990. View at Publisher · View at Google Scholar · View at Scopus
  228. G. M. Pastori and V. S. Trippi, “Oxidative stress induces high rate of glutathione reductase synthesis in a drought-resistant maize strain,” Plant and Cell Physiology, vol. 33, no. 7, pp. 957–961, 1992. View at Google Scholar · View at Scopus
  229. D. -F. Shu, L. -Y. Wang, M. Duan, Y. -S. Deng, and Q. -W. Meng, “Antisense-mediated depletion of tomato chloroplast glutathione reductase enhances susceptibility to chilling stress,” Plant Physiology and Biochemistry, vol. 49, no. 10, pp. 1228–1237, 2011. View at Publisher · View at Google Scholar
  230. M. Aono, A. Kubo, H. Saji, K. Tanaka, and N. Kondo, “Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity,” Plant and Cell Physiology, vol. 34, no. 1, pp. 129–135, 1993. View at Google Scholar · View at Scopus
  231. M. J. Tseng, C. W. Liu, and J. C. Yiu, “Tolerance to sulfur dioxide in transgenic Chinese cabbage transformed with both the superoxide dismutase containing manganese and catalase genes of Escherichia coli,” Scientia Horticulturae, vol. 115, no. 2, pp. 101–110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  232. S. C. Lee, S. Y. Kwon, and S. R. Kim, “Ectopic expression of a cold-responsive CuZn superoxide dismutase gene, SodCc1, in transgenic rice (Oryza sativa L.),” Journal of Plant Biology, vol. 52, no. 2, pp. 154–160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  233. M. Aono, H. Saji, A. Sakamoto, K. Tanaka, N. Kondo, and Tanaka, “Paraquat tolerance of transgenic Nicotiana tabacum with enhanced activities of glutathione reductase and superoxide dismutase,” Plant and Cell Physiology, vol. 36, no. 8, pp. 1687–1691, 1995. View at Google Scholar · View at Scopus
  234. S. Y. Kwon, Y. J. Jeong, H. S. Lee et al., “Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen-mediated oxidative stress,” Plant, Cell and Environment, vol. 25, no. 7, pp. 873–882, 2002. View at Publisher · View at Google Scholar · View at Scopus
  235. S. Lim, Y. H. Kim, S. H. Kim et al., “Enhanced tolerance of transgenic sweetpotato plants that express both CuZnSOD and APX in chloroplasts to methyl viologen-mediated oxidative stress and chilling,” Molecular Breeding, vol. 19, no. 3, pp. 227–239, 2007. View at Publisher · View at Google Scholar · View at Scopus
  236. S. S. Kwak, S. Lim, L. Tang, S. Y. Kwon, and H. S. Lee, “Enhanced tolerance of transgenic crops expressing both SOD and APX in chloroplasts to multiple environmental stress,” in Salinity and Water Stress, M. Ashraf, M. Ozturk, and H. R. Athar, Eds., pp. 197–203, Springer, Netherland, 2009. View at Google Scholar
  237. K. Asada, “The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons,” Annual Review of Plant Biology, vol. 50, pp. 601–639, 1999. View at Google Scholar · View at Scopus
  238. K. Biehler and H. Fock, “Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat,” Plant Physiology, vol. 112, no. 1, pp. 265–272, 1996. View at Google Scholar · View at Scopus
  239. C. H. Foyer and G. Noctor, “Oxygen processing in photosynthesis: regulation and signalling,” New Phytologist, vol. 146, no. 3, pp. 359–388, 2000. View at Publisher · View at Google Scholar · View at Scopus
  240. R. K. Sairam, P. S. Deshmukh, and D. C. Saxena, “Role of antioxidant systems in wheat genotypes tolerance to water stress,” Biologia Plantarum, vol. 41, no. 3, pp. 387–394, 1998. View at Publisher · View at Google Scholar · View at Scopus
  241. S. Wang, D. Liang, C. Li, Y. Hao, F. Ma, and H. Shu, “Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought-tolerant and drought-sensitive apple rootstocks,” Plant Physiology and Biochemistry, vol. 51, pp. 81–89, 2012. View at Publisher · View at Google Scholar
  242. J. A. Hernández, A. Jiménez, P. Mullineaux, and F. Sevilla, “Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences,” Plant, Cell and Environment, vol. 23, no. 8, pp. 853–862, 2000. View at Publisher · View at Google Scholar · View at Scopus
  243. U. Perez-Lopez, A. Robredo, M. Lacuesta et al., “The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2,” Physiologia Plantarum, vol. 135, no. 1, pp. 29–42, 2009. View at Publisher · View at Google Scholar · View at Scopus
  244. N. Karray-Bouraoui, F. Harbaoui, M. Rabhi et al., “Different antioxidant responses to salt stress in two different provenances of Carthamus tinctorius L,” Acta Physiologiae Plantarum, vol. 33, no. 4, pp. 1435–1444, 2011. View at Publisher · View at Google Scholar
  245. X. Wang, P. Yang, Q. Gao et al., “Proteomic analysis of the response to high-salinity stress in Physcomitrella patens,” Planta, vol. 228, no. 1, pp. 167–177, 2008. View at Publisher · View at Google Scholar · View at Scopus
  246. H. Vaidyanathan, P. Sivakumar, R. Chakrabarty, and G. Thomas, “Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.) - Differential response in salt-tolerant and sensitive varieties,” Plant Science, vol. 165, no. 6, pp. 1411–1418, 2003. View at Publisher · View at Google Scholar
  247. A. Shalata, V. Mittova, M. Volokita, M. Guy, and M. Tal, “Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system,” Physiologia Plantarum, vol. 112, no. 4, pp. 487–494, 2001. View at Publisher · View at Google Scholar · View at Scopus
  248. A. Hediye Sekmen, I. Türkan, and S. Takio, “Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media,” Physiologia Plantarum, vol. 131, no. 3, pp. 399–411, 2007. View at Publisher · View at Google Scholar · View at Scopus
  249. B. A. Logan, D. Kornyeyev, J. Hardison, and A. S. Holaday, “The role of antioxidant enzymes in photoprotection,” Photosynthesis Research, vol. 88, no. 2, pp. 119–132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  250. Y. H. Zhou, J. Q. Yu, W. H. Mao, L. F. Huang, X. S. Song, and S. Nogués, “Genotypic variation of Rubisco expression, photosynthetic electron flow and antioxidant metabolism in the chloroplasts of chill-exposed cucumber plants,” Plant and Cell Physiology, vol. 47, no. 2, pp. 192–199, 2006. View at Publisher · View at Google Scholar · View at Scopus
  251. T. K. Prasad, “Role of catalase in inducing chilling tolerance in pre-emergent maize seedlings,” Plant Physiology, vol. 114, no. 4, pp. 1369–1376, 1997. View at Google Scholar · View at Scopus
  252. Y. Zhang, H. R. Tang, and Y. Luo, “Variation in antioxidant enzyme activities of two strawberry cultivars with short-term low temperature stress,” World Journal of Agricultural Sciences, vol. 4, no. 4, pp. 458–462, 2008. View at Google Scholar
  253. L. S. Jahnke, M. R. Hull, and S. P. Long, “Chilling stress and oxygen metabolizing enzymes in Zea mays and Zea diploperennis,” Plant, Cell and Environment, vol. 14, no. 1, pp. 97–104, 1991. View at Google Scholar
  254. D. M. Hodges, C. J. Andrews, D. A. Johnson, and R. I. Hamilton, “Antioxidant compound responses to chilling stress in differentially sensitive inbred maize lines,” Physiologia Plantarum, vol. 98, no. 4, pp. 685–692, 1996. View at Google Scholar · View at Scopus
  255. M. Huang and Z. Guo, “Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity,” Biologia Plantarum, vol. 49, no. 1, pp. 81–84, 2005. View at Publisher · View at Google Scholar · View at Scopus
  256. D. E. Salt, M. Blaylock, N. P. B. A. Kumar et al., “Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants,” Biotechnology, vol. 13, no. 5, pp. 468–474, 1995. View at Google Scholar · View at Scopus
  257. S. Mishra and R. S. Dubey, “Heavy metal toxicity induced alterations in photosynthetic metabolism in plants,” in Handbook of Photosynthesis, M. Pessarakli, Ed., pp. 845–863, CRC Press, Taylor and Francis Publishing Company, Fla, USA, 2nd edition, 2005. View at Google Scholar
  258. S. Gallego, M. Benavides, and M. Tomaro, “Involvement of an antioxidant defence system in the adaptive response to heavy metal ions in Helianthus annuus L. cells,” Plant Growth Regulation, vol. 36, no. 3, pp. 267–273, 2002. View at Publisher · View at Google Scholar · View at Scopus
  259. F. Vinit-Dunand, D. Epron, B. Alaoui-Sossé, and P. M. Badot, “Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants,” Plant Science, vol. 163, no. 1, pp. 53–58, 2002. View at Publisher · View at Google Scholar · View at Scopus
  260. M. Moustakas, T. Lanaras, L. Symeonidis, and S. Karataglis, “Growth and some photosynthetic characteristics of field grown Avena sativa under copper and lead stress,” Photosynthetica, vol. 30, no. 3, pp. 389–396, 1994. View at Google Scholar · View at Scopus
  261. A. Źróbek-Sokolnik, H. Asard, K. Górska-Koplińska, and R. J. Górecki, “Cadmium and zinc-mediated oxidative burst in tobacco BY-2 cell suspension cultures,” Acta Physiologiae Plantarum, vol. 31, no. 1, pp. 43–49, 2009. View at Publisher · View at Google Scholar
  262. S. M. Gallego, M. P. Benavides, and M. L. Tomaro, “Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress,” Plant Science, vol. 121, no. 2, pp. 151–159, 1996. View at Google Scholar · View at Scopus
  263. J. E. J. Weckx and H. M. M. Clijsters, “Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper,” Physiologia Plantarum, vol. 96, no. 3, pp. 506–512, 1996. View at Google Scholar · View at Scopus
  264. Y. Yamamoto, A. Hachiya, and H. Matsumoto, “Oxidative damage to membranes by a combination of aluminum and iron in suspension-cultured tobacco cells,” Plant and Cell Physiology, vol. 38, no. 12, pp. 1333–1339, 1997. View at Google Scholar · View at Scopus
  265. S. S. Sharma and K. J. Dietz, “The relationship between metal toxicity and cellular redox imbalance,” Trends in Plant Science, vol. 14, no. 1, pp. 43–50, 2009. View at Publisher · View at Google Scholar · View at Scopus
  266. L. M. Sandalio, M. Rodríguez-Serrano, L. A. del Río, and M. C. Romero-Puertas, “Reactive oxygen species and signaling in cadmium toxicity,” in Reactive Oxygen Species in Plant Signaling, L. A. Rio and A. Puppo, Eds., pp. 175–189, Springer, Berlin, Germany, 2009. View at Google Scholar
  267. A. Giannakoula, M. Moustakas, T. Syros, and T. Yupsanis, “Aluminum stress induces up-regulation of an efficient antioxidant system in the Al-tolerant maize line but not in the Al-sensitive line,” Environmental and Experimental Botany, vol. 67, no. 3, pp. 487–494, 2010. View at Publisher · View at Google Scholar · View at Scopus
  268. S. Srivastava, A. K. Srivastava, P. Suprasanna, and S. F. D'souza, “Comparative antioxidant profiling of tolerant and sensitive varieties of Brassica juncea L. to arsenate and arsenite exposure,” Bulletin of Environmental Contamination and Toxicology, vol. 84, no. 3, pp. 342–346, 2010. View at Publisher · View at Google Scholar · View at Scopus
  269. M. Blumthaler and W. Ambach, “Indication of increasing solar ultraviolet-B radiation flux in alpine regions,” Science, vol. 248, no. 4952, pp. 206–208, 1990. View at Google Scholar · View at Scopus
  270. D. J. Allen, I. F. Mckee, P. K. Farage, and N. R. Baker, “Analysis of limitations to CO2 assimilation on exposure of leaves of two Brassica napus cultivars to UV-B,” Plant, Cell and Environment, vol. 20, no. 5, pp. 633–640, 1997. View at Google Scholar · View at Scopus
  271. J. He, L. K. Huang, W. S. Chow, M. L. Whitecross, and J. M Anderson, “Effects of supplementary ultraviolet-B radiation on rice and pea plants,” Australian Journal of Plant Physiology, vol. 20, no. 2, pp. 129–142, 1993. View at Google Scholar
  272. A. Strid, W. S. Chow, and J. M. Anderson, “UV-B damage and protection at the molecular level in plants,” Photosynthesis Research, vol. 39, no. 3, pp. 475–489, 1994. View at Publisher · View at Google Scholar · View at Scopus
  273. N. Doke, “Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal wall components of Phytophthora infestans and specific inhibition of the reaction by suppressors of hypersensitivity,” Physiological Plant Pathology, vol. 23, no. 3, pp. 359–367, 1983. View at Google Scholar · View at Scopus
  274. J. J. Grant, B. W. Yun, and G. J. Loake, “Oxidative burst and cognate redox signalling reported by luciferase imaging: identification of a signal network that functions independently of ethylene, SA and Me-JA but is dependent on MAPKK activity,” Plant Journal, vol. 24, no. 5, pp. 569–582, 2000. View at Publisher · View at Google Scholar · View at Scopus
  275. J. M. Chittoor, J. E. Leach, and F. F. White, “Differential induction of a peroxidase gene family during infection of rice by Xanthomonas oryzae pv. oryzae,” Molecular Plant-Microbe Interactions, vol. 10, no. 7, pp. 861–871, 1997. View at Google Scholar · View at Scopus
  276. K. Sasaki, T. Iwai, S. Hiraga et al., “Ten rice peroxidases redundantly respond to multiple stresses including infection with rice blast fungus,” Plant and Cell Physiology, vol. 45, no. 10, pp. 1442–1452, 2004. View at Google Scholar · View at Scopus
  277. H. Abdollahi and Z. Ghahremani, “The role of chloroplasts in the interaction between Erwinia amylovora and host plants,” Acta Horticulturae, vol. 896, pp. 215–221, 2011. View at Google Scholar
  278. Y. Liu, D. Ren, S. Pike, S. Pallardy, W. Gassmann, and S. Zhang, “Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade,” Plant Journal, vol. 51, no. 6, pp. 941–954, 2007. View at Publisher · View at Google Scholar · View at Scopus
  279. R. Mittler, E. H. Herr, B. L. Orvar et al., “Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 24, pp. 14165–14170, 1999. View at Publisher · View at Google Scholar · View at Scopus