Table of Contents Author Guidelines Submit a Manuscript
Journal of Botany
Volume 2012, Article ID 480310, 8 pages
http://dx.doi.org/10.1155/2012/480310
Research Article

Genome Mutation Revealed by Artificial Hybridization between Chrysanthemum yoshinaganthum and Chrysanthemum vestitum Assessed by FISH and GISH

1Department of Botany and Microbiology, Faculty of Science, Minia University, El-Minia 61519, Egypt
2Laboratory of Plant Genetics and Breeding Research, Department of Agriculture, Faculty of Agriculture, Tokyo University of Agriculture, Funako, Kanagawa, Atsugi 1737, Japan

Received 21 September 2011; Revised 7 December 2011; Accepted 21 December 2011

Academic Editor: Jaume Pellicer

Copyright © 2012 Magdy Hussein Abd El-Twab and Katsuhiko Kondo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Kondo, R. Tanaka, D. Hong, M. Hizume, Q. Yang, and M. Nkata, “A chromosome study of Ajania and its allied genera in the Chrysantheminae, the Anthemideae, the Compositae in Chinese highlands,” in Karyomorphological and Cytogenetical Studies in Plants Common to Japan and China, R. Tanaka, Ed., pp. 1–13, Hiroshima University, 1994. View at Google Scholar
  2. K. Kondo, R. Tanaka, S. Ge, D. Hong, and M. Nakata, “Chromosome studies of Ajania and its alied genera,” in Compositae: Systematics. Prooceeding of the International Compositae Conference, D. J. N. Hind and H. J. Beentje, Eds., vol. 1, pp. 425–434, Royal Botanic Gardens, Kew, NY, USA, 1994.
  3. M. H. Abd El-Twab and K. Kondo, “Physical mapping of 5S, 45S, Arabidopsis-type telomere sequence repeats and AT-rich regions in Achillea millefolium showing intrachromosomal variation by FISH and DAPI,” Chromosome Botany, vol. 4, pp. 37–45, 2009. View at Google Scholar
  4. M. Ørgaard and J. S. Heslop-Harrison, “Investigations of genome relationships between Leymus, Psathyrostachys and Hordeum inferred by genomic DNA:DNA in situ hybridization,” Annals of Botany, vol. 73, no. 2, pp. 195–203, 1994. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Kondo and M. H. Abd El-Twab, “Analysis of intera-generic relationships Sensu stricto among the members of Chrysanthemum sensu lato by using fluorescence in situ hybridization and genomic in situ hybridization,” Chromosome Science, vol. 6, pp. 87–100, 2002. View at Google Scholar
  6. M. H. Abd El-Twab and K. Kondo, “Rapid genome reshuffling induced by allopolyploidy in F1 hybrid in Chrysanthemum remotipinum (formerly Ajania remotipinna) and Chrysanthemum chanetii (formerly Dendranthema chanetii),” Chromosome Botany, vol. 2, pp. 1–9, 2007. View at Google Scholar
  7. M. H. Abd El-Twab and K. Kondo, “FISH physical mapping of 5S rDNA and telomere sequence repeats identified a peculiar chromosome mapping and mutation in Leucanthemella linearis and Nipponanthemum nipponicum in Chrysanthemum sensu lato,” Chromosome Botany, vol. 2, pp. 11–17, 2007. View at Google Scholar
  8. M. H. Abd El-Twab and K. Kondo, “Isolation of chromosomes and mutation in the interspecific hybrid between Chrysanthemum boreale and Ch. vestitum using fluorescence in situ hybridization and genomic in situ hybridization,” Chromosome Botany, vol. 2, pp. 19–24, 2007. View at Google Scholar
  9. M. H. Abd El-Twab and K. Kondo, “Identification of parental chromosomes, intra-chromosomal changes and relationship of the artificial intergeneric hybrid between Chrysanthemum horaimontanum and Tanacetum vulgare by single color and simultaneous bicolor of FISH and GISH,” Chromosome Botany, vol. 2, pp. 113–119, 2007. View at Google Scholar
  10. K. Wolff and J. Peters-van Rijn, “Rapid detection of genetic variability in chrysanthemum (Dendranthema grandiflora Tzvelev) using random primers,” Heredity, vol. 71, p. 4, 1993. View at Google Scholar · View at Scopus
  11. R. Tanaka, M. Nakata, and M. Aoyama, “Cytogenetic studies on wild Chrysanthemum from China IV. Karyotype of Ch. morii,” Chromosome Information Service, vol. 43, pp. 18–19, 1987. View at Google Scholar
  12. R. Tanaka, S. Kawasaki, Y. Yonezawa, K. Taniguchi, and H. Ikeda, “Cytogenetic studies on wild Chrysanthemum from China V. F1-hybrids of Chrysanthemum lavandulifolium var. sianense X Ch. boreale,” Cytologia, vol. 54, pp. 365–372, 1989. View at Google Scholar
  13. M. Nakata, D. Hong, J. Qiu, H. Uchiyama, R. Tanaka, and S. Chen, “Cytogenetic studies on wild Chrysanthemum sensu lato in China. I. Karyotype of Dendranthema vestitum,” Japanese Journal of Botany, vol. 66, pp. 199–204, 1991. View at Google Scholar
  14. M. Nakata, D. Hong, J. Qiu, H. Uchiyama, R. Tanaka, and S. Chen, “Cytogenetic studies on wild Chrysanthemum sensu lato in China. II. A natural hybrid between Dendranthema indicum (2n=36) and D. vestitum (2n=54) from Hbei Province,” Japanese Journal of Botany, vol. 67, pp. 92–100, 1992. View at Google Scholar
  15. K. Kondo, R. Tanaka, S. Ge, D. Hong, and M. Nakata, “Cytogenetic studies on wild Chrysanthemum sensu lato in China. IV. Karyomorphological characteristics of three species of Ajania,” Japanese Journal of Botany, vol. 67, pp. 324–329, 1992. View at Google Scholar
  16. M. H. Abd El-Twab and K. Kondo, “Rapid genome changes after inter specific hybridization between Dendranthema indica X D. vestita identified by fluorescent in situ hybridization and 4, 6-diamidino-2-phenylindole,” Chromosome Science, vol. 7, pp. 77–81, 2003. View at Google Scholar
  17. M. H. Abd El-Twab and K. Kondo, “Discrimination and isolation of terminal chromosomal regions of Dendranthema occidentali-japonense in the chromosomes of F1 hybrid of Dendranthema boreale by using GISH,” Chromosome Science, vol. 4, pp. 87–93, 2000. View at Google Scholar
  18. M. H. Abd El-Twab and K. Kondo, “Molecular cytogenetic identification of the parental genomes in the intergeneric hybrid between Leucanthemella linearis and Nipponanthemum nipponicum during meiosis and mitosis,” Caryologia, vol. 54, no. 2, pp. 109–114, 2001. View at Google Scholar · View at Scopus
  19. J. Inafuku, M. Nabeyama, Y. Kikuma, J. Saitoh, S. Kubota, and S. I. Kohno, “Chromosomal location and nucleotide sequences of 5S ribosomal DNA of two cyprinid species (Osteichthyes, Pisces),” Chromosome Research, vol. 8, no. 3, pp. 193–199, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. M. H. Abd El-Twab and K. Kondo, “Physical mapping of 5S rDNA in chromosomes of Dendranthema by fluorescence in situ hybridization,” Chromosome Science, vol. 6, pp. 13–16, 2002. View at Google Scholar
  21. M. H. Abd El-Twab and K. Kondo, “Identification of mutation and homologous chromosomes in four cultivars of Dendranthema grandiflora by physical mapping of 5S and 45S rDNA using fluorescence genomic in situ hybridization,” Chromosome Science, vol. 8, pp. 81–68, 2004. View at Google Scholar
  22. M. H. Abd El-Twab and K. Kondo, “FISH physical mapping of 5S, 45S and Arabidopsis-type telomere sequence repeats in Chrysanthemum zawadskii showing intra-chromosomal variation and complexity in nature,” Chromosome Botany, vol. 1, pp. 1–5, 2006. View at Google Scholar
  23. J. Fuchs and I. Schubert, “Localization of seed protein genes on metaphase chromosomes of Vicia faba via fluorescence in situ hybridization,” Chromosome Research, vol. 3, no. 2, pp. 94–100, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. G. E. Harrison and J. S. Heslop Harrison, “Centromeric repetitive DNA sequences in the genus Brassica,” Theoretical and Applied Genetics, vol. 90, no. 2, pp. 157–165, 1995. View at Google Scholar · View at Scopus
  25. J. S. Heslop-Harrison, T. Schwarzacher, K. Anamthawat-Jonson, A. R. Leich, M. Shi, and I. J. Leich, “In situ hybridization with automated chromosome denaturation,” Technique, vol. 3, pp. 109–116, 1991. View at Google Scholar
  26. K. Kondo, Y. Honda, and R. Tanaka, “Chromosome marking in Dendranthema japonica var. wakasaense and its closely related species by fluorescence in situ hybridization using rDNA probe.,” La Kromosomo, vol. 81, pp. 2785–2791, 1996. View at Google Scholar
  27. K. Khaung, K. Kondo, and R. Tanaka, “Physical mapping of rDNA by fluorescent in situ hybridization using pTa71 probe in three tetraploid species of Dendranthema,” Chromosome Science, vol. 1, pp. 25–30, 1997. View at Google Scholar
  28. M. H. Abd El-Twab and K. Kondo, “Physical mapping of 45S rDNA loci by fluorescent in situ hybridization and Evolution among polyploid Dendranthema species,” Chromosome Science, vol. 7, pp. 71–76, 2003. View at Google Scholar
  29. S. P. Adams, I. J. Leitch, M. D. Bennett, M. W. Chase, and A. R. Leitch, “Ribosomal DNA evolution and phylogeny in Aloe (Asphodelaceae),” American Journal of Botany, vol. 87, no. 11, pp. 1578–1583, 2000. View at Google Scholar · View at Scopus
  30. M. H. Abd El-Twab and K. Kondo, “Fluorescence in situ hybridization and genomic in situ hybridization to identify the parental genomes in the intergeneric hybrid between Chrysanthemum japonicum and Nipponanthemum nipponicum,” Chromosome Botany, vol. 1, pp. 7–11, 2006. View at Google Scholar
  31. Y. Honda, M. H. Abd El-Twab, H. Ogura, K. Kondo, R. Tanaka, and T. Shidahara, “Counting sat-chromosome numbers and species characterization in wild species of Chrysanthemum sensu lato by fluorescence in situ hybridization using pTa71 probe,” Chromosome Science, vol. 1, pp. 77–81, 1997. View at Google Scholar
  32. M. H. Abd El-Twab, K. Kondo, and D. Hong, “Isolation of a particular chromosome of Ajania remotipinna in a chromosome complement of an artificial F1 hybrid of Dendranthema lavandulifolia X Ajania remotipinna by use of genomic in situ hybridization,” Chromosome Science, vol. 3, pp. 21–28, 1999. View at Google Scholar
  33. M. H. Abd El-Twab and K. Kondo, “Identification of nucleolar organizing regions and parental chromosomes in F1 hybrid of Dendranthema japonica and Tanacetum vulgare simultaneously by fluorescence in situ hybridization,” Chromosome Science, vol. 3, pp. 59–62, 1999. View at Google Scholar
  34. M. H. Abd El-Twab and K. Kondo, “Visualization of genomic relationships in allotetraploid hybrids between Chrysanthemum lavandulifolium X Ch. chanetii by fluorescence in situ hybridization and genomic in situ hybridizarion,” Chromosome Botany, vol. 3, pp. 19–25, 2008. View at Google Scholar
  35. T. Schwarzacher, A. R. Leitch, M. D. Bennett, and J. S. Heslop-harrison, “In Situ localization of parental genomes in a wide hybrid,” Annals of Botany, vol. 64, no. 3, pp. 315–324, 1989. View at Google Scholar · View at Scopus
  36. K. Anamthawat-Jónsson, T. Schwarzacher, A. R. Leitch, M. D. Bennett, and J. S. Heslop-Harrison, “Discrimination between closely related Triticeae species using genomic DNA as a probe,” Theoretical and Applied Genetics, vol. 79, no. 6, pp. 721–728, 1990. View at Publisher · View at Google Scholar · View at Scopus
  37. S. T. Bennett, A. Y. Kenton, and M. D. Bennett, “Genomic in situ hybridization reveals the allopolyploid nature of Milium montianum (Gramineae),” Chromosoma, vol. 101, no. 7, pp. 420–424, 1992. View at Publisher · View at Google Scholar · View at Scopus
  38. A. S. Parokonny, A. Kenton, Y. Y. Gleba, and M. D. Bennett, “The fate of recombinant chromosomes and genome interaction in Nicotiana asymmetric somatic hybrids and their sexual progeny,” Theoretical and Applied Genetics, vol. 89, no. 4, pp. 488–497, 1994. View at Google Scholar · View at Scopus
  39. Chen Qin, R. L. Conner, and A. Laroche, “Identification of the parental chromosomes of the wheat-alien amphiploid Agrotana by genomic in situ hybridization,” Genome, vol. 38, no. 6, pp. 1163–1169, 1995. View at Google Scholar · View at Scopus
  40. C. Takahashi, I. J. Leitch, A. Ryan, M. D. Bennett, and P. E. Brandham, “The use of genomic in situ hybridization (GISH) to show transmission of recombinant chromosomes by a partially fertile bigeneric hybrid, Gasteria lutzii X Aloe aristata (Aloaceae), to its progeny,” Chromosoma, vol. 105, no. 6, pp. 342–348, 1996. View at Google Scholar · View at Scopus
  41. H. Ogura and K. Kondo, “Application of genomic in situ hybridization to the chromosome complement of the intergeneric hybrid between Leucanthemella linearis (Matsum.) Tzuvelev and Nipponanthemum nipponicum (Franch.et Maxim.) Kitamura,” Chromosome Science, vol. 2, pp. 91–93, 1998. View at Google Scholar
  42. K. Kondo, M. H. Abd El-Twab, and R. Tanaka, “Fluorescence in situ hybridization identifies reciprocal translocation of somatic chromosomes and origin of extra chromosome by an artificial, intergeneric hybrid between Dendranthema japonica X Tanacetum vulgare,” Chromosome Science, vol. 3, pp. 15–19, 1999. View at Google Scholar
  43. M. H. Abd El-Twab, H. Shinoyama, and K. Kondo, “Evidences of intergeneric somatic-hybrids between Dendranthema grandiflora cv. Shuho-no-chikara and Artemisia sieversiana and their chromosomal mutations by using fluorescence in situ hybridization and genomic in situ hybridization,” Chromosome Science, vol. 8, pp. 29–34, 2004. View at Google Scholar
  44. W. L. Gerlach and J. R. Bedbrook, “Cloning and characterization of ribosomal RNA genes from wheat and barley,” Nucleic Acids Research, vol. 7, no. 7, pp. 1869–1885, 1979. View at Google Scholar · View at Scopus
  45. A. V. Cox, S. T. Bennett, A. S. Parokonny, A. Kenton, M. A. Callimassia, and M. D. Bennett, “Comparison of plant telomere locations using a PCR-generated synthetic probe,” Annals of Botany, vol. 72, no. 3, pp. 239–247, 1993. View at Publisher · View at Google Scholar · View at Scopus
  46. P. S. Soltis and D. E. Soltis, “The role of genetic and genomic attributes in the success of polyploids,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 13, pp. 7051–7057, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. X. P. Zhao, Y. Si, R. E. Hanson et al., “Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton,” Genome Research, vol. 8, no. 5, pp. 479–492, 1998. View at Google Scholar · View at Scopus
  48. N. Shimotomai, “Zurkaryogentik der gattung Chrysanthemum,” Journal of Science, Hiroshima University, Series B, vol. 2, pp. 1–100, 1933. View at Google Scholar
  49. B. S. Gaut, M. L. T. D'Ennequin, A. S. Peek, and M. C. Sawkins, “Maize as a model for the evolution of plant nuclear genomes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 13, pp. 7008–7015, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. R. Tanaka, “On the speciation and karyotypes in diploid and tetraploid species of Chrysanthemum yoshinaganthum (2n=36),” Cytologia, vol. 25, pp. 43–58, 1960. View at Google Scholar
  51. S. Fukai, Y. Kamigaichi, N. Yamasaki, W. Zhang, and M. Goi, “Distribution, morphological variations and cpDNA PCR-RFLP analysis of Dendranthema yoshinaganthum,” Journal of the Japanese Society for Horticultural Science, vol. 71, no. 1, pp. 114–122, 2002. View at Google Scholar · View at Scopus
  52. K. Kondo, K. K. Khaung, R. Tanaka, and M. Nakata, “Fluorescent banding patterns in hexaploid Dendranthema occidentali-japonense and D. vestitum,” La Kromosomo, vol. 70-80, pp. 2739–2745, 1995. View at Google Scholar
  53. K. K. Khaung, Species relationships of the polyploid Dendranthema, sec. Dendranthema (the Chrysantheminae, the Anthemideae, the Compositae), A thesis, School of Science, Hiroshima University, 1997.
  54. M. Nakata, “Possible natural hybrids with chromosome 2n=62 between Chrysanthemum wakasaense and C. morifolium,” Bulletin National of Science Museum, Tokyo, Series B, vol. 15, pp. 143–149, 1989. View at Google Scholar
  55. E. J. Gardner, M. J. Simmons, and D. P. Snustad, “Variations in Chromosome Structure,” in Principles of Genetics, chapter 18, pp. 488–510, John Wiley & Sons, New York, NY, USA, 8th edition, 1984. View at Google Scholar
  56. I. Schubert and U. Wobus, “In situ hybridization confirms jumping nucleolus organizing regions in Allium,” Chromosoma, vol. 92, no. 2, pp. 143–148, 1985. View at Publisher · View at Google Scholar · View at Scopus