Table of Contents Author Guidelines Submit a Manuscript
Journal of Botany
Volume 2012, Article ID 726206, 17 pages
http://dx.doi.org/10.1155/2012/726206
Research Article

Parameters Symptomatic for Boron Toxicity in Leaves of Tomato Plants

Departament of Plant Physiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain

Received 23 January 2012; Accepted 22 February 2012

Academic Editor: Agustín González-Fontes

Copyright © 2012 Luis M. Cervilla et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. O. Nable, G. S. Bañuelos, and J. G. Paull, “Boron toxicity,” Plant and Soil, vol. 193, no. 1-2, pp. 181–198, 1997. View at Google Scholar · View at Scopus
  2. FAOSTAT, October 2007http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567).
  3. J. L. Parks and M. Edwards, “Boron in the environment,” Critical Reviews in Environmental Science and Technology, vol. 35, no. 2, pp. 81–114, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Juan, R. M. Rivero, L. Romero, and J. M. Ruiz, “Evaluation of some nutritional and biochemical indicators in selecting salt-resistant tomato cultivars,” Environmental and Experimental Botany, vol. 54, no. 3, pp. 193–201, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Sánchez-Rodríguez, M. Rubio-Wilhelmi, L. M. Cervilla et al., “Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants,” Plant Science, vol. 178, no. 1, pp. 30–40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Molassiotis, T. Sotiropoulos, G. Tanou, G. Diamantidis, and I. Therios, “Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM 9 (Malus domestica Borkh),” Environmental and Experimental Botany, vol. 56, no. 1, pp. 54–62, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. T. E. Sotiropoulos, A. Molassiotis, D. Almaliotis et al., “Growth, nutritional status, chlorophyll content, and antioxidant responses of the apple rootstock MM 111 shoots cultured under high boron concentrations in vitro,” Journal of Plant Nutrition, vol. 29, no. 3, pp. 575–583, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. L. M. Cervilla, B. Blasco, J. J. Ríos, L. Romero, and J. M. Ruiz, “Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity,” Annals of Botany, vol. 100, no. 4, pp. 747–756, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. J. M. Ruiz, R. M. Rivero, and L. Romero, “Preliminary studies on the involvement of biosynthesis of cysteine and glutathione concentration in the resistance to B toxicity in sunflower plants,” Plant Science, vol. 165, no. 4, pp. 811–817, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Keles, I. Öncel, and N. Yenice, “Relationship between boron content and antioxidant compounds in Citrus leaves taken from fields with different water source,” Plant and Soil, vol. 265, no. 1-2, pp. 345–353, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Parvaiz and S. Satyawati, “Salt stress and phyto-biochemical responses of plants—a review,” Plant, Soil and Environment, vol. 54, no. 3, pp. 89–99, 2008. View at Google Scholar · View at Scopus
  12. P. D. Hare, W. A. Cress, and J. Van Staden, “Proline synthesis and degradation: a model system for elucidating stress-related signal transduction,” Journal of Experimental Botany, vol. 50, no. 333, pp. 413–434, 1999. View at Google Scholar · View at Scopus
  13. W. Claussen, “Proline as a measure of stress in tomato plants,” Plant Science, vol. 168, no. 1, pp. 241–248, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. Hong, K. Lakkineni, Z. Zhang, and D. P. S. Verma, “Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress,” Plant Physiology, vol. 122, no. 4, pp. 1129–1136, 2000. View at Google Scholar · View at Scopus
  15. J. B. Harborne and C. A. Williams, “Advances in flavonoid research since 1992,” Phytochemistry, vol. 55, no. 6, pp. 481–504, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. L. M. Cervilla, M. A. Rosales, M. M. Rubio-Wilhelmi et al., “Involvement of lignification and membrane permeability in the tomato root response to boron toxicity,” Plant Science, vol. 176, no. 4, pp. 545–552, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. L. M. Cervilla, B. Blasco, J. J. Ríos et al., “Response of nitrogen metabolism to boron toxicity in tomato plants,” Plant Biology, vol. 11, no. 5, pp. 671–677, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Wolf, “Improvement in the azomethine-H method for determination of boron,” Communications of Soil Science and Plant Analysis, vol. 5, no. 1, pp. 39–44, 1974. View at Google Scholar
  19. N. Doke, “Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components,” Physiological Plant Pathology, vol. 23, no. 3, pp. 345–357, 1983. View at Google Scholar · View at Scopus
  20. J. Kubiś, “Exogenous spermidine differentially alters activities of some scavenging system enzymes, H2O2 and superoxide radical levels in water-stressed cucumber leaves,” Journal of Plant Physiology, vol. 165, no. 4, pp. 397–406, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. S. P. Mukherjee and M. A. Choudhuri, “Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings,” Physiologia Plantarum, vol. 58, no. 2, pp. 166–170, 1983. View at Publisher · View at Google Scholar
  22. J. Fu and B. Huang, “Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress,” Environmental and Experimental Botany, vol. 45, no. 2, pp. 105–114, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. J. J. Irigoyen, D. W. Emerich, and M. Sánchez-Díaz, “Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants,” Physiologia Plantarum, vol. 84, no. 1, pp. 55–60, 1992. View at Publisher · View at Google Scholar
  24. A. R. Wellburn, “The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution,” Journal of Plant Physiology, vol. 144, no. 3, pp. 307–313, 1994. View at Google Scholar · View at Scopus
  25. C. A. Ticconi, C. A. Delatorre, and S. Abel, “Attenuation of phosphate starvation responses by phosphite in Arabidopsis,” Plant Physiology, vol. 127, no. 3, pp. 963–972, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. R. M. Rivero, J. M. Ruiz, P. C. García, L. R. López-Lefebre, E. Sánchez, and L. Romero, “Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants,” Plant Science, vol. 160, no. 2, pp. 315–321, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. D. O. Kim, S. W. Jeong, and C. Y. Lee, “Antioxidant capacity of phenolic phytochemicals from various cultivars of plums,” Food Chemistry, vol. 81, no. 3, pp. 321–326, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. E. N. Aquino-Bolaños and E. Mercado-Silva, “Effects of polyphenol oxidase and peroxidase activity, phenolics and lignin content on the browning of cut jicama,” Postharvest Biology and Technology, vol. 33, no. 3, pp. 275–283, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Kalir, G. Omri, and A. Poljakoff-Mayber, “Peroxidase and catalase activity in leaves of Halimione portulacoides exposed to salinity,” Physiologia Plantarum, vol. 62, no. 2, pp. 238–244, 1984. View at Publisher · View at Google Scholar
  30. N. Verbruggen, C. Hermans, and H. Schat, “Molecular mechanisms of metal hyperaccumulation in plants,” New Phytologist, vol. 181, no. 4, pp. 759–776, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. A. R. Stiles, D. Bautista, E. Atalay, M. Babaoǧlu, and N. Terry, “Mechanisms of boron tolerance and accumulation in plants: a physiological comparison of the extremely boron-tolerant plant species, puccinellia distans, with the moderately boron-tolerant gypsophila arrostil,” Environmental Science and Technology, vol. 44, no. 18, pp. 7089–7095, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Mittler, “Oxidative stress, antioxidants and stress tolerance,” Trends in Plant Science, vol. 7, no. 9, pp. 405–410, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Gunes, G. Soylemezoglu, A. Inal, E. G. Bagci, S. Coban, and O. Sahin, “Antioxidant and stomatal responses of grapevine (Vitis vinifera L.) to boron toxicity,” Scientia Horticulturae, vol. 110, no. 3, pp. 279–284, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. J. M. Ruiz, E. Sanchez, P. C. Garcia, L. R. Lopez-Lefebre, R. M. Rivero, and L. Romero, “Proline metabolism and NAD kinase activity in greenbean plants subjected to cold-shock,” Phytochemistry, vol. 59, no. 5, pp. 473–478, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. R. M. Rivero, J. M. Ruiz, and L. M. Romero, “Importance of N source on heat stress tolerance due to the accumulation of proline and quaternary ammonium compounds in tomato plants,” Plant Biology, vol. 6, no. 6, pp. 702–707, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. E. Karabal, M. Yücel, and H. A. Öktem, “Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity,” Plant Science, vol. 164, no. 6, pp. 925–933, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Eraslan, A. Inal, A. Gunes, and M. Alpaslan, “Boron toxicity alters nitrate reductase activity, proline accumulation, membrane permeability, and mineral constituents of tomato and pepper plants,” Journal of Plant Nutrition, vol. 30, no. 6, pp. 981–994, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. I. Uluisik, A. Kaya, D. E. Fomenko et al., “Boron stress activates the general amino acid control mechanism and inhibits protein synthesis,” PLoS One, vol. 6, no. 11, Article ID e27772, 2011. View at Publisher · View at Google Scholar
  39. J. N. Nishio, “Why are higher plants green? Evolution of the higher plant photosynthetic pigment complement,” Plant, Cell and Environment, vol. 23, no. 6, pp. 539–548, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. L. Z. Mao, H. F. Lu, Q. Wang, and M. M. Cai, “Comparative photosynthesis characteristics of Calycanthus chinensis and Chimonanthus praecox,” Photosynthetica, vol. 45, no. 4, pp. 601–605, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. P. K. Ghosh, Ajay, K. K. Bandyopadhyay et al., “Comparative effectiveness of cattle manure, poultry manure, phosphocompost and fertilizer-NPK on three cropping systems in vertisols of semi-arid tropics. II. Dry matter yield, nodulation, chlorophyll content and enzyme activity,” Bioresource Technology, vol. 95, no. 1, pp. 85–93, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. I. E. Papadakis, K. N. Dimassi, A. M. Bosabalidis, I. N. Therios, A. Patakas, and A. Giannakoula, “Boron toxicity in ‘Clementine’ mandarin plants grafted on two rootstocks,” Plant Science, vol. 166, no. 2, pp. 539–547, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Han, N. Tang, H. X. Jiang, L. T. Yang, Y. Li, and L. S. Chen, “CO2 assimilation, photosystem II photochemistry, carbohydrate metabolism and antioxidant system of citrus leaves in response to boron stress,” Plant Science, vol. 176, no. 1, pp. 143–153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. F. Eraslan, A. Inal, A. Gunes, and M. Alpaslan, “Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity,” Scientia Horticulturae, vol. 113, no. 2, pp. 120–128, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. G. E. Bartley and P. A. Scolnik, “Plant carotenoids: pigments for photoprotection, visual attraction, and human health,” Plant Cell, vol. 7, no. 7, pp. 1027–1038, 1995. View at Publisher · View at Google Scholar · View at Scopus
  46. K. S. Gould, “Nature's Swiss army knife: the diverse protective roles of anthocyanins in leaves,” Journal of Biomedicine and Biotechnology, vol. 2004, no. 5, pp. 314–320, 2004. View at Google Scholar · View at Scopus
  47. F. Eraslan, A. Inal, D. J. Pilbeam, and A. Gunes, “Interactive effects of salicylic acid and silicon on oxidative damage and antioxidant activity in spinach (Spinacia oleracea L. cv. Matador) grown under boron toxicity and salinity,” Plant Growth Regulation, vol. 55, no. 3, pp. 207–219, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Yamasaki, Y. Sakihama, and N. Ikehara, “Flavonoid-peroxidase reaction as a detoxification mechanism of plant cells against H2O2,” Plant Physiology, vol. 115, no. 4, pp. 1405–1412, 1997. View at Google Scholar · View at Scopus
  49. M. P. Kähkönen, A. I. Hopia, H. J. Vuorela et al., “Antioxidant activity of plant extracts containing phenolic compounds,” Journal of Agricultural and Food Chemistry, vol. 47, no. 10, pp. 3954–3962, 1999. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Pourcel, J. M. Routaboul, V. Cheynier, L. Lepiniec, and I. Debeaujon, “Flavonoid oxidation in plants: from biochemical properties to physiological functions,” Trends in Plant Science, vol. 12, no. 1, pp. 29–36, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. R. Mittler, “Abiotic stress, the field environment and stress combination,” Trends in Plant Science, vol. 11, no. 1, pp. 15–19, 2006. View at Publisher · View at Google Scholar · View at Scopus