Table of Contents
Journal of Biomarkers
Volume 2013, Article ID 403783, 6 pages
http://dx.doi.org/10.1155/2013/403783
Research Article

eNOS Gene Variant in Patients with Coronary Artery Disease

Endocrinology and Metabolism Research Center (EMRC), Tehran University of Medical Sciences, Tehran 14114, Iran

Received 4 September 2012; Revised 21 October 2012; Accepted 27 October 2012

Academic Editor: José Luis Martín-Ventura

Copyright © 2013 Milad Abolhalaj et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. F. Peden and M. Farrall, “Thirty-five common variants for coronary artery disease: the fruits of much collaborative labour,” Human Molecular Genetics, vol. 20, no. R2, pp. R198–R205, 2011. View at Google Scholar
  2. N. Jeerooburkhan, L. C. Jones, S. Bujac et al., “Genetic and environmental determinants of plasma nitrogen oxides and risk of ischemic heart disease,” Hypertension, vol. 38, no. 5, pp. 1054–1061, 2001. View at Google Scholar · View at Scopus
  3. P. K. BORAH et al., “Polymorphism of angiotensin converting enzyme (insertion/deletion) and endothelial nitric oxide synthase (intron 4ab) genes in a population from northeast India,” Journal of Genetics, vol. 90, no. 3, pp. e105–e109, 2011. View at Google Scholar
  4. L. Zhang, “Relationship between polymorphisms of angiotensin-converting enzyme gene insertion/deletion, endothelial nitric oxide synthase gene intron 4 VNTR and risk for cervical cancer,” Life Science Journal, vol. 9, no. 2, 2012. View at Google Scholar
  5. B. Hemmens and B. Mayer, “Enzymology of nitric oxide synthases,” Methods in Molecular Biology, vol. 100, pp. 1–32, 1998. View at Google Scholar · View at Scopus
  6. T. J. McCabe, D. Fulton, L. J. Roman, and W. C. Sessa, “Enhanced electron flux and reduced calmodulin dissociation may explain “calcium-independent” eNOS activation by phosphorylation,” Journal of Biological Chemistry, vol. 275, no. 9, pp. 6123–6128, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. I. Fleming and R. Busse, “Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 284, no. 1, pp. R1–R12, 2003. View at Google Scholar · View at Scopus
  8. M. Schleicher, J. Yu, T. Murata et al., “The Akt1-eNOS axis illustrates the specificity of kinase-substrate relationships in vivo,” Science Signaling, vol. 2, no. 82, p. ra41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. R. M. Rapoport, M. B. Draznin, and F. Murad, “Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation,” Nature, vol. 306, no. 5939, pp. 174–176, 1983. View at Google Scholar · View at Scopus
  10. U. Forstermann, A. Mulsch, E. Bohme, and R. Busse, “Stimulation of soluble guanylate cyclase by an acetylcholine-induced endothelium-derived factor from rabbit and canine arteries,” Circulation Research, vol. 58, no. 4, pp. 531–538, 1986. View at Google Scholar · View at Scopus
  11. L. J. Ignarro, R. G. Harbison, K. S. Wood, and P. J. Kadowitz, “Activation of purified soluble guanylate cyclase by endothelium-derived relaxing factor from intrapulmonary artery and vein: stimulation by acetylcholine, bradykinin and arachidonic acid,” Journal of Pharmacology and Experimental Therapeutics, vol. 237, no. 3, pp. 893–900, 1986. View at Google Scholar · View at Scopus
  12. U. Alheid, J. C. Frolich, and U. Forstermann, “Endothelium-derived relaxing factor from cultured human endothelial cells inhibits aggregation of human platelets,” Thrombosis Research, vol. 47, no. 5, pp. 561–571, 1987. View at Google Scholar · View at Scopus
  13. M. W. Radomski, R. M. Palmer, and S. Moncada, “The anti-aggregating properties of vascular endotheliumml: interactions between prostacyclin and nitric oxide,” British Journal of Pharmacology, vol. 92, no. 3, pp. 639–646, 1987. View at Google Scholar · View at Scopus
  14. P. Kubes, M. Suzuki, and D. N. Granger, “Nitric oxide: an endogenous modulator of leukocyte adhesion,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 11, pp. 4651–4655, 1991. View at Google Scholar · View at Scopus
  15. H. Arndt, C. W. Smith, and D. N. Granger, “Leukocyte-endothelial cell adhesion in spontaneously hypertensive and normotensive rats,” Hypertension, vol. 21, no. 5, pp. 667–673, 1993. View at Google Scholar · View at Scopus
  16. M. Annuk, M. Zilmer, and B. Fellström, “Endothelium-dependent vasodilation and oxidative stress in chronic renal failure: impact on cardiovascular disease,” Kidney International, vol. 84, pp. S50–S53, 2003. View at Google Scholar · View at Scopus
  17. S. Dimmeler and A. M. Zeiher, “Nitric oxide-an endothelial cell survival factor,” Cell Death and Differentiation, vol. 6, no. 10, pp. 964–968, 1999. View at Google Scholar · View at Scopus
  18. T. Nakaki, M. Nakayama, and R. Kato, “Inhibition by nitric oxide and nitric oxide-producing vasodilators of DNA synthesis in vascular smooth muscle cells,” European Journal of Pharmacology, vol. 189, no. 6, pp. 347–353, 1990. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Nunokawa and S. Tanaka, “Interferon-γ inhibits proliferation of rat vascular smooth muscle cells by nitric oxide generation,” Biochemical and Biophysical Research Communications, vol. 188, no. 1, pp. 409–415, 1992. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Vallance, J. Collier, and S. Moncada, “Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man,” The Lancet, vol. 2, no. 8670, pp. 997–1000, 1989. View at Google Scholar · View at Scopus
  21. A. E. Orimadegun, O. Fawole, J. O. Okereke, F. O. Akinbami, and O. Sodeinde, “Increasing burden of childhood severe malaria in a Nigerian tertiary hospital: implication for control,” Journal of Tropical Pediatrics, vol. 53, no. 3, pp. 185–189, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Sengoelge, G. Sunder-Plassmann, and W. H. Hörl, “Potential risk for infection and atherosclerosis due to iron therapy,” Journal of Renal Nutrition, vol. 15, no. 1, pp. 105–110, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. U. Ramakrishnan, E. Kuklina, and A. D. Stein, “Iron stores and cardiovascular disease risk factors in women of reproductive age in the United States,” American Journal of Clinical Nutrition, vol. 76, no. 6, pp. 1256–1260, 2002. View at Google Scholar · View at Scopus
  24. Y. Miyamoto, Y. Saito, N. Kajiyama et al., “Endothelial nitric oxide synthase gene is positively associated with essential hypertension,” Hypertension, vol. 32, no. 1, pp. 3–8, 1998. View at Google Scholar · View at Scopus
  25. A. Onat, I. Sari, G. Hergenç et al., “Predictors of abdominal obesity and high susceptibility of cardiometabolic risk to its increments among Turkish women: a prospective population-based study,” Metabolism, vol. 56, no. 3, pp. 348–356, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. O. H. Seoudi et al., “Allelic polymorphism in the endothelial nitric oxide synthase gene in coronary artery diseases,” Egyptian Journal of Hospital Medicine, vol. 37, pp. 700–708, 2009. View at Google Scholar
  27. S. Patkar, B. H. Charita, C. Ramesh, and T. Padma, “High risk of essential hypertension in males with intron 4 VNTR polymorphism of eNOS gene,” Indian Journal of Human Genetics, vol. 15, no. 2, pp. 49–53, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Agrawal, V. P. Singh, S. Tewari et al., “Angiotensin-converting enzyme gene polymorphism in coronary artery disease in North India,” Indian Heart Journal, vol. 56, no. 1, pp. 44–46, 2004. View at Google Scholar · View at Scopus
  29. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. S. S. A. El Gawad et al., “Expression of inducible nitric oxide synthase gene in diabetic and non-diabetic coronary artery disease patients,” Inflammation. In press.
  31. J. Loscalzo and G. Welch, “Nitric oxide and its role in the cardiovascular system,” Progress in Cardiovascular Diseases, vol. 38, no. 2, pp. 87–104, 1995. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Yoon, J. Song, S. H. Hong, and J. Q. Kim, “Plasma nitric oxide concentrations and nitric oxide synthase gene polymorphisms in coronary artery disease,” Clinical Chemistry, vol. 46, no. 10, pp. 1626–1630, 2000. View at Google Scholar · View at Scopus
  33. J. P. Casas, L. E. Bautista, S. E. Humphries, and A. D. Hingorani, “Endothelial nitric oxide synthase genotype and ischemic heart disease: meta-analysis of 26 studies involving 23028 subjects,” Circulation, vol. 109, no. 11, pp. 1359–1365, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. A. J. de Belder, M. W. Radomski, H. J. F. Why et al., “Nitric oxide synthase activities in human myocardium,” The Lancet, vol. 341, no. 8837, pp. 84–85, 1993. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Stein, T. Eschenhagen, J. Rüdiger, H. Scholz, U. Förstermann, and I. Gath, “Increased expression of constitutive nitric oxide synthase III, but not inducible nitric oxide synthase II, in human heart failure,” Journal of the American College of Cardiology, vol. 32, no. 5, pp. 1179–1186, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Angeline, W. Isabel, and G. J. Tsongalis, “Endothelial nitric oxide gene polymorphisms, nitric oxide production and coronary artery disease risk in a South Indian population,” Experimental and Molecular Pathology, vol. 89, no. 3, pp. 205–208, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Matyar, G. Attila, E. Acartürk, O. Akpinar, and T. Inal, “eNOS gene intron 4 a/b VNTR polymorphism is a risk factor for coronary artery disease in Southern Turkey,” Clinica Chimica Acta, vol. 354, no. 1-2, pp. 153–158, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. X. L. Wang, A. S. Sim, R. F. Badenhop, R. Michael Mccredie, and D. E. L. Wilcken, “A smoking-dependent risk of coronary artery disease associated with a polymorphism of the endothelial nitric oxide synthase gene,” Nature Medicine, vol. 2, no. 1, pp. 41–45, 1996. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Ichihara, Y. Yamada, T. Fujimura, N. Nakashima, and M. Yokota, “Association of a polymorphism of the endothelial constitutive nitric oxide synthase gene with myocardial infarction in the Japanese population,” American Journal of Cardiology, vol. 81, no. 1, pp. 83–86, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. T. A. Kunnas, E. Ilveskoski, T. Niskakangas et al., “Association of the endothelial nitric oxide synthase gene polymorphism with risk of coronary artery disease and myocardial infarction in middle-aged men,” Journal of Molecular Medicine, vol. 80, no. 9, pp. 605–609, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Rao, H. Austin, M. N. Davidoff, and A. M. Zafari, “Endothelial nitric oxide synthase intron 4 polymorphism is a marker for coronary artery disease in African-American and Caucasian men,” Ethnicity and Disease, vol. 15, no. 2, pp. 191–197, 2005. View at Google Scholar · View at Scopus
  42. K. W. Park, K. H. You, S. Oh et al., “Association of endothelial constitutive nitric oxide synthase gene polymorphism with acute coronary syndrome in Koreans,” Heart, vol. 90, no. 3, pp. 282–285, 2004. View at Google Scholar · View at Scopus
  43. A. Gardemann, J. Lohre, S. Cayci, N. Katz, H. Tillmanns, and W. Haberbosch, “The T allele of the missense Glu298Asp endothelial nitric oxide synthase gene polymorphism is associated with coronary heart disease in younger individuals with high atherosclerotic risk profile,” Atherosclerosis, vol. 160, no. 1, pp. 167–175, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. W. Wu, C. M. Lee, S. M. Hsu, and Y. T. Lee, “Association between endothelial nitric oxide synthase polymorphisms and the risk of premature coronary artery disease in Taiwan,” Journal of Internal Medicine of Taiwan, vol. 14, no. 1, pp. 1–10, 2003. View at Google Scholar · View at Scopus
  45. N. T. Lin, M. J. Lee, R. P. Lee, A. I. C. Hong, and H. I. Chen, “Analysis of endothelial nitric oxide synthase gene polymorphisms with cardiovascular diseases in eastern Taiwan,” Chinese Journal of Physiology, vol. 51, no. 1, pp. 42–47, 2008. View at Google Scholar · View at Scopus
  46. M. Vasilakou, V. Votteas, C. Kasparian et al., “Lack of association between endothelial nitric oxide synthase gene polymorphisms and risk of premature coronary artery disease in the Greek population,” Acta Cardiologica, vol. 63, no. 5, pp. 609–614, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Tsukada, K. Yokoyama, T. Arai et al., “Evidence of association of the ecNOS gene polymorphism with plasma NO metabolite levels in humans,” Biochemical and Biophysical Research Communications, vol. 245, no. 1, pp. 190–193, 1998. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Salimi, M. Firoozrai, I. Nourmohammadi, M. Shabani, and A. Mohebbi, “Endothelial nitric oxide synthase gene intron4 VNTR polymorphism in patients with coronary artery disease in Iran,” Indian Journal of Medical Research, vol. 124, no. 6, pp. 683–688, 2006. View at Google Scholar · View at Scopus
  49. M. X. Zhang, C. Zhang, Y. H. Shen et al., “Effect of 27nt small RNA on endothelial nitric-oxide synthase expression,” Molecular Biology of the Cell, vol. 19, no. 9, pp. 3997–4005, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. M. X. Zhang, C. Zhang, Y. H. Shen et al., “Biogenesis of short intronic repeat 27-nucleotide small RNA from endothelial nitric-oxide synthase gene,” Journal of Biological Chemistry, vol. 283, no. 21, pp. 14685–14693, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Senthil, M. Raveendran, Y. H. Shen et al., “Genotype-dependent expression of endothelial nitric oxide synthase (eNOS) and its regulatory proteins in cultured endothelial cells,” DNA and Cell Biology, vol. 24, no. 4, pp. 218–224, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Fujita, K. Masago, Y. Hatachi et al., “Genetic polymorphisms in the endothelial nitric oxide synthase gene correlate with overall survival in advanced non-small-cell lung cancer patients treated with platinum-based doublet chemotherapy,” BMC Medical Genetics, vol. 11, article no. 167, 2010. View at Publisher · View at Google Scholar · View at Scopus