Table of Contents
Journal of Biomarkers
Volume 2013 (2013), Article ID 602417, 9 pages
http://dx.doi.org/10.1155/2013/602417
Research Article

Tissue Reactivity of the 14F7 Mab Raised against N-Glycolyl GM3 Ganglioside in Tumors of Neuroectodermal, Mesodermal, and Epithelial Origin

1Department of Quality Control, Center of Molecular Immunology, 216 Street and 15 Avenue Atabey, Playa, P.O. Box 16040, 11600 Havana, Cuba
2Department of Cell Biology and Tissues Banking, National Institute of Oncology and Radiobiology, 29 and F Street Vedado, Plaza de la Revolución, 10400 Havana, Cuba
3Department of Pathology, Manuel Fajardo General Hospital, Zapata and D Street Vedado, Plaza de la Revolución, 10400 Havana, Cuba
4Department of Neurosurgery, Juan Manuel Marquez Pediatric Hospital, Marianao, 11400 Havana, Cuba
5Research and Development Direction, Center of Molecular Immunology, 216 Street and 15 Avenue Atabey, Playa, P.O. Box 16040, 11600 Havana, Cuba

Received 27 August 2012; Accepted 20 December 2012

Academic Editor: George T. Tsangaris

Copyright © 2013 Rancés Blanco et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. I. Hakomori, “Aberrant glycosylation in cancer cell membranes as focused on glycolipids: overview and perspectives,” Cancer Research, vol. 45, no. 6, pp. 2405–2414, 1985. View at Google Scholar · View at Scopus
  2. N. Shinoura, T. Dohi, T. Kondo, M. Yoshioka, K. Takakura, and M. Oshima, “Ganglioside composition and its relation to clinical data in brain tumors,” Neurosurgery, vol. 31, no. 3, pp. 541–549, 1992. View at Publisher · View at Google Scholar
  3. T. Yamashita, R. Wada, T. Sasaki et al., “A vital role for glycosphingolipid synthesis during development and differentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 16, pp. 9142–9147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Kohla, E. Stockfleth, and R. Schauer, “Gangliosides with O-acetylated sialic acids in tumors of neuroectodermal origin,” Neurochemical Research, vol. 27, no. 7-8, pp. 583–592, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. T. N. Seyfried, R. K. Yu, M. Saito, and M. Albert, “Ganglioside composition of an experimental mouse brain tumor,” Cancer Research, vol. 47, no. 13, pp. 3538–3542, 1987. View at Google Scholar
  6. J. A. Ecsedy, K. A. Holthaus, H. C. Yohe, and T. N. Seyfried, “Expression of mouse sialic acid on gangliosides of a human glioma grown as a xenograft in SCID mice,” Journal of Neurochemistry, vol. 73, no. 1, pp. 254–259, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Higashi, Y. Nishi, and Y. Fukuin, “Tumor-associated expression of glycosphingolipid Hanganutziu-Deicher antigen in human cancers,” Gann, The Japanese Journal of Cancer Research, vol. 75, no. 11, pp. 1025–1029, 1984. View at Google Scholar · View at Scopus
  8. W. Schlenzka, L. Shaw, S. Kelm et al., “CMP-N-acetylneuraminic acid hydroxylase: the first cytosolic Rieske iron-sulphur protein to be described in Eukarya,” FEBS Letters, vol. 385, no. 3, pp. 197–200, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. N. Malykh, R. Schauer, and L. Shaw, “N-Glycolylneuraminic acid in human tumours,” Biochimie, vol. 83, no. 7, pp. 623–634, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Carr, A. Mullet, Z. Mazorra et al., “A mouse IgG1 monoclonal antibody specific for N-glycolyl GM3 ganglioside recognized breast and melanoma tumors,” Hybridoma, vol. 19, no. 3, pp. 241–247, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. A. M. Vazquez, M. Alfonso, B. Lanne et al., “Generation of a murine monoclonal antibody specific for N-glycolylneuraminic acid-containing gangliosides that also recognizes sulfated glycolipids,” Hybridoma, vol. 14, no. 6, pp. 551–556, 1995. View at Google Scholar · View at Scopus
  12. P. Tangvoranuntakul, P. Gagneux, S. Diaz et al., “Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 21, pp. 12045–12050, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Bardor, D. H. Nguyen, S. Diaz, and A. Varki, “Mechanism of uptake and incorporation of the non-human sialic acid N-glycolylneuraminic acid into human cells,” Journal of Biological Chemistry, vol. 280, no. 6, pp. 4228–4237, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. H. H. Chou, H. Takematsu, S. Diaz et al., “A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 20, pp. 11751–11756, 1998. View at Google Scholar · View at Scopus
  15. H. van Cruijsen, M. Ruiz, P. van der Valk, T. D. de Gruijl, and G. Giaccone, “Tissue micro array analysis of ganglioside N-glycolyl GM3 expression and signal transducer and activator of transcription (STAT)-3 activation in relation to dendritic cell infiltration and microvessel density in non-small cell lung cancer,” BMC Cancer, vol. 9, article 180, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Blanco, E. Rengifo, M. Cedeño, C. E. Rengifo, D. F. Alonso, and A. Carr, “Immunoreactivity of the 14F7 Mab raised against N-Glycolyl GM3 ganglioside in epithelial malignant tumors from digestive system,” ISRN Gastroenterology, vol. 2011, Article ID 645641, 8 pages, 2011. View at Google Scholar
  17. R. Blanco, E. Rengifo, Ch. E. Rengifo, M. Cedeño, M. Frómeta, and A. Carr, “Immunohistochemical reactivity of the 14F7 monoclonal antibody raised against N-glycolyl GM3 ganglioside in some benign and malignant skin neoplasms,” ISRN Dermatology, vol. 2011, Article ID 848909, 8 pages, 2011. View at Google Scholar
  18. R. Blanco, M. Cedeño, X. Escobar et al., “Immunorecognition of the 14F7 Mab raised against N-Glycolyl GM3 ganglioside in some normal and malignant tissues from genitourinary system,” ISRN Pathology, vol. 2011, Article ID 953803, 10 pages, 2011. View at Publisher · View at Google Scholar
  19. R. Blanco, Ch. E. Rengifo, M. Cedeño, M. Frómeta, E. Rengifo, and A. Carr, “Immunoreactivity of the 14F7 Mab (raised against N-glycolyl GM3 ganglioside) as a positive prognostic factor in non-small-cell lung cancer,” Pathology Research International, vol. 2012, Article ID 235418, 12 pages, 2012. View at Publisher · View at Google Scholar
  20. C. Oetke, S. Hinderlich, R. Brossmer, W. Reutter, M. Pawlita, and O. T. Keppler, “Evidence for efficient uptake and incorporation of sialic acid by eukaryotic cells,” European Journal of Biochemistry, vol. 268, no. 16, pp. 4553–4561, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Kawai, A. Kato, H. Higashi, S. Kato, and M. Naiki, “Quantitative determination of N-glycolylneuraminic acid expression in human cancerous tissues and avian lymphoma cell lines as a tumor-associated sialic acid by gas chromatography-mass spectrometry,” Cancer Research, vol. 51, no. 4, pp. 1242–1246, 1991. View at Google Scholar · View at Scopus
  22. H. Higashi, M. Naiki, S. Matuo, and K. Okouchi, “Antigen of “serum sickness” type of heterophile antibodies in human sera: identification as gangliosides with N-glycolylneuraminic acid,” Biochemical and Biophysical Research Communications, vol. 79, no. 2, pp. 388–395, 1977. View at Google Scholar · View at Scopus
  23. T. Nishimaki, K. Kano, and F. Milgrom, “Hanganutziu-Deicher antigen and antibody in pathologic sera and tissues,” Journal of Immunology, vol. 122, no. 6, pp. 2314–2318, 1979. View at Google Scholar · View at Scopus
  24. G. Marquina, H. Waki, L. E. Fernandez et al., “Gangliosides expressed in human breast cancer,” Cancer Research, vol. 56, no. 22, pp. 5165–5171, 1996. View at Google Scholar
  25. J. P. Oliva, Z. Valdés, A. Casacó et al., “Clinical evidences of GM3 (NeuGc) ganglioside expression in human breast cancer using the 14F7 monoclonal antibody labelled with 99mTc,” Breast Cancer Research and Treatment, vol. 96, no. 2, pp. 115–121, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. A. M. Scursoni, L. Galluzzo, S. Camarero et al., “Detection of N-glycolyl GM3 ganglioside in neuroectodermal tumors by immunohistochemistry: an attractive vaccine target for aggressive pediatric cancer,” Clinical and Developmental Immunology, vol. 2011, Article ID 245181, 6 pages, 2011. View at Google Scholar
  27. D. Osuna and E. de Álava, “Molecular pathology of sarcomas,” Reviews on Recent Clinical Trials, vol. 4, pp. 12–26, 2009. View at Publisher · View at Google Scholar
  28. E. G. Kanduma, J. C. Mukuria, and O. W. Mwanda, “Serum total sialic acid and Hanganutziu-Deicher antibody in normals and in cancer patients,” East African Medical Journal, vol. 84, no. 5, pp. 207–214, 2007. View at Google Scholar · View at Scopus
  29. P. Babál, P. Janega, A. Cerná, I. Kholováb, and E. Brabencovác, “Neoplastic transformation of the thyroid gland is accompanied by changes in cellular sialylation,” Acta Histochemica, vol. 108, no. 2, pp. 133–140, 2006. View at Publisher · View at Google Scholar
  30. V. Amberger-Murphy, “Hypoxia helps glioma to fight therapy,” Current Cancer Drug Targets, vol. 9, no. 3, pp. 381–390, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Nordsmark, J. Alsner, J. Keller et al., “Hypoxia in human soft tissue sarcomas: adverse impact on survival and no association with p53 mutations,” British Journal of Cancer, vol. 84, no. 8, pp. 1070–1075, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. N. Burrows, M. Babur, J. Resch, K. J. Williams, and G. Brabant, “Hypoxia-inducible factor in thyroid carcinoma,” Journal of Thyroid Research, vol. 2011, Article ID 762905, 17 pages, 2011. View at Publisher · View at Google Scholar
  33. J. Yin, A. Hashimoto, M. Izawa et al., “Hypoxic culture induces expression of sialin, a sialic acid transporter, and cancer-associated gangliosides containing non-human sialic acid on human cancer cells,” Cancer Research, vol. 66, no. 6, pp. 2937–2945, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. J. de Leòn, A. Fernández, C. Mesa, M. Clavel, and L. E. Fernández, “Role of tumour-associated N-glycolylated variant of GM3 ganglioside in cancer progression: e ffect over CD4 expression on T cells,” Cancer Immunology, Immunotherapy, vol. 55, no. 4, pp. 443–450, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. J. de León, A. Fernández, M. Clavell et al., “Differential influence of the tumour-specific non-human sialic acid containing GM3 ganglioside on CD4+CD25− effector and naturally occurring CD4+CD25+ regulatory T cells function,” International Immunology, vol. 20, no. 4, pp. 591–600, 2008. View at Google Scholar