Table of Contents
Journal of Biophysics
Volume 2009 (2009), Article ID 434038, 12 pages
http://dx.doi.org/10.1155/2009/434038
Research Article

Crystal Structural and Functional Analysis of the Putative Dipeptidase from Pyrococcus horikoshii OT3

1Experimental Facility Division, SPring-8 Group, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Hsinchu Science Park, Taiwan
2Peptide Institute, Inc., Ina Mino-shi, Osaka 562-8686, Japan
3RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
4RIKEN Systems and Structural Biology Center, Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
5Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Received 3 February 2009; Accepted 30 April 2009

Academic Editor: Eaton Edward Lattman

Copyright © 2009 Jeyaraman Jeyakanthan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Booth, P. V. Jennings, I. N. Fhaolain, and G. O'Cuinn, “Prolidase activity of Lactobacillus lactis subsp. cremoris AM2: partial purification and characterization,” Journal of Dairy Research, vol. 57, pp. 245–254, 1990. View at Google Scholar
  2. P. Browne and G. O'Cuinn, “The purification and characterization of a proline dipeptidase from guinea pig brain,” The Journal of Biological Chemistry, vol. 258, no. 10, pp. 6147–6154, 1983. View at Google Scholar
  3. F. Endo, A. Tanoue, H. Nakai et al., “Primary structure and gene localization of human prolidase,” The Journal of Biological Chemistry, vol. 264, no. 8, pp. 4476–4481, 1989. View at Google Scholar
  4. H. Sjöström, O. Norén, and L. Josefsson, “Purification and specificity of pig intestinal prolidase,” Biochimica et Biophysica Acta, vol. 327, no. 2, pp. 457–470, 1973. View at Google Scholar
  5. M. D. Fernández-Esplá, M. C. Martín-Hernández, and P. F. Fox, “Purification and characterization of a prolidase from Lactobacillus casei subsp. casei IFPL 731,” Applied and Environmental Microbiology, vol. 63, no. 1, pp. 314–316, 1997. View at Google Scholar
  6. K. T. Suga, T. Kabashima, K. Ito et al., “Prolidase from Xanthomonas maltophilia: purification and characterization of the enzyme,” Bioscience, Biotechnology and Biochemistry, vol. 59, no. 11, pp. 2087–2090, 1995. View at Google Scholar
  7. R. C. Scriver, R. J. Smith, and J. M. Phang, “Disorders of proline and hydroxyproline metabolism,” in The Metabolic Basis of Inherited Diseases, J. B. Stanbury, D. S. Wyngaarden, J. L. Fredrickson, M. S. Goldstein, and Brown, Eds., McGraw Hill, New York, NY, USA, 1983. View at Google Scholar
  8. W. Bockelmann, “The proteolytic system of starter and non-starter bacteria: components and their importance for cheese ripening,” International Dairy Journal, vol. 5, no. 8, pp. 977–994, 1995. View at Google Scholar
  9. T.-C. Cheng, L. Liu, B. Wang et al., “Nucleotide sequence of a gene encoding an organophosphorus nerve agent degrading enzyme from Alteromonas haloplanktis,” Journal of Industrial Microbiology and Biotechnology, vol. 18, no. 1, pp. 49–55, 1997. View at Google Scholar
  10. M. J. Maher, M. Ghosh, A. M. Grunden et al., “Structure of the prolidase from Pyrococcus furiosus,” Biochemistry, vol. 43, no. 10, pp. 2771–2783, 2004. View at Publisher · View at Google Scholar
  11. S. C. Graham, M. Lee, H. C. Freeman, and J. M. Guss, “An orthorhombic form of Escherichia coli aminopeptidase P at 2.4 Å resolution,” Acta Crystallographica D, vol. 59, no. 5, pp. 897–902, 2003. View at Publisher · View at Google Scholar
  12. T. H. Tahirov, H. Oki, T. Tsukihara et al., “Crystal structure of methionine aminopeptidase from hyperthermophile, Pyrococcus furiosus,” Journal of Molecular Biology, vol. 284, no. 1, pp. 101–124, 1998. View at Publisher · View at Google Scholar
  13. M. Ghosh, A. M. Grunden, D. M. Dunn, R. Weiss, and M. W. Adams, “Characterization of native and recombinant forms of an unusual cobalt-dependenct proline dipeptidase (prolidase) from the hyperthermophilic archaeon Pyrococcus furiosus,” Journal of Bacteriology, vol. 180, pp. 4781–4789, 1998. View at Google Scholar
  14. Z. Otwinowski and W. Minor, “Processing of X-ray diffraction data collected in oscillation mode,” Methods in Enzymology, vol. 276, pp. 307–326, 1997. View at Publisher · View at Google Scholar
  15. W. A. Hendrickson, J. R. Horton, and D. M. LeMaster, “Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three dimensional structure,” The EMBO Journal, vol. 9, no. 5, pp. 1665–1672, 1990. View at Google Scholar
  16. T. C. Terwilliger and J. Berendzen, “Automated MAD and MIR structure solution,” Acta Crystallographica D, vol. 55, no. 4, pp. 849–861, 1999. View at Publisher · View at Google Scholar
  17. A. Perrakis, R. Morris, and V. S. Lamzin, “Automated protein model building combined with iterative structure refinement,” Nature Structural Biology, vol. 6, no. 5, pp. 458–463, 1999. View at Publisher · View at Google Scholar
  18. A.T. Brünger, J. Kuriyan, and M. Karplus, “Crystallographic R factor refinement by molecular dynamics,” Science, vol. 235, no. 4787, pp. 458–460, 1987. View at Google Scholar
  19. A. T. Brünger, P. D. Adams, G. M. Clore et al., “Crystallography & NMR system: a new software suite for macromolecular structure determination,” Acta Crystallographica D, vol. 54, no. 5, pp. 905–921, 1998. View at Google Scholar
  20. P. J. Kraulis, “A program to produce both detailed and schematic plots of protein structures,” Journal of Applied Crystallography, vol. 24, part 5, pp. 947–950, 1991. View at Google Scholar
  21. E. A. Merritt and D. J. Bacon, “Raster3D: photorealistic molecular graphic,” Methods in Enzymology, vol. 277, pp. 505–524, 1997. View at Google Scholar
  22. H. Durchschlag, in Thermodynamic Data for Biochemistry and Biotechnology, H.-J. Hinz, Ed., chapter 3, p. 45, Springer, Berlin, Germany, 1986.
  23. R. A. Laskowski, M. W. McArthur, D. S. Moss, and J. M. Thornton, “PROCHECK: a program to check the stereochemical quality of protein structures,” Journal of Applied Crystallography, vol. 26, pp. 283–291, 1993. View at Google Scholar
  24. A. Yaron and D. Mlynar, “Aminopeptidase-P,” Biophys Res Commun, vol. 32, pp. 658–663, 1968. View at Google Scholar
  25. G. Yang, R. B. Kirkpatrick, T. Ho et al., “Steady-state kinetic characterization of substrates and metal-ion specificities of the full-length and N-terminally truncated recombinant human methionine aminopeptidases (type 2),” Biochemistry, vol. 40, no. 35, pp. 10645–10654, 2001. View at Publisher · View at Google Scholar
  26. S. Tanskul, K. Oda, H. Oyama, N. Noparatnaraporn, M. Tsunemi, and K. Takada, “Substrate specificity of alkaline serine proteinase isolated from photosynthetic bacterium, Rubrivivax gelatinosus KDDS1,” Biochemical and Biophysical Research Communications, vol. 309, no. 3, pp. 547–551, 2003. View at Publisher · View at Google Scholar
  27. W. A. Kabsch, “Solution for the best rotation to relate two sets of vectors,” Acta Crystallographica A, vol. 32, pp. 922–923, 1976. View at Google Scholar
  28. B. Padmanabhan, A. Paehler, and M. Horikoshi, “Structure of creatine amidinohydrolase from Actinobacillus,” Acta Crystallographica D, vol. 58, no. 8, pp. 1322–1328, 2002. View at Publisher · View at Google Scholar
  29. J. F. Bazan, L. H. Weaver, S. L. Roderick, R. Huber, and B. W. Matthews, “Sequence and structure comparison suggest that methionine aminopeptidase, prolidase, aminopeptidase P, and creatinase share a common fold,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 7, pp. 2473–2477, 1994. View at Google Scholar
  30. S. Liu, J. Widom, C. W. Kemp, C. M. Crews, and J. Clardy, “Structure of human methionine aminopeptidase-2 complexed with fumagillin,” Science, vol. 282, no. 5392, pp. 1324–1327, 1998. View at Google Scholar
  31. M. C. J. Wilce, C. S. Bond, N. E. Dixon et al., “Structure and mechanism of a proline-specific aminopeptidase from Escherichia coli,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 7, pp. 3472–3477, 1998. View at Publisher · View at Google Scholar
  32. S. L. Roderick and B. W. Matthews, “Structure of the cobalt-dependent methionine aminopeptidase from Escherichia coli: a new type of proteolytic enzyme,” Biochemistry, vol. 32, no. 15, pp. 3907–3912, 1993. View at Google Scholar
  33. H. W. Hoeffken, S. H. Knof, P. A. Bartlett, R. Huber, H. Moellering, and G. Schumacher, “Crystal structure determination, refinement and molecular model of creatine amidinohydrolase from Pseudomonas putida,” Journal of Molecular Biology, vol. 204, no. 2, pp. 417–433, 1988. View at Google Scholar
  34. W. T. Lowther and B. W. Mathews, “Metalloamonopeptidases: common functional themes in disparate structural surrounding,” Chemical Reviews, vol. 102, pp. 4581–4607, 2002. View at Google Scholar
  35. V. Plotnikov, A. Rochalski, M. Brandts et al., “An autosampling differential scanning calorimeter instrument for studying molecular interactions.,” Assay Drug Dev Technol, vol. 1, no. 1, part 1, pp. 83–90, 2002. View at Google Scholar
  36. V. M. D'souza, B. Bennett, A. J. Copik, and R. C. Holz, “Divalent metal binding properties of the methionyl aminopeptidase from Escherichia coli,” Biochemistry, vol. 39, no. 13, pp. 3817–3826, 2000. View at Publisher · View at Google Scholar
  37. J. D. Thompson, D. G. Higgins, and T. J. Gibson, “ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice,” Nucleic Acids Research, vol. 22, pp. 4673–4680, 1994. View at Google Scholar
  38. P. Gouet, X. Robert, and E. Courcelle, “ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins,” Nucleic Acids Research, vol. 31, no. 13, pp. 3320–3323, 2003. View at Publisher · View at Google Scholar
  39. E. C. Griffith, Z. Su, S. Niwayama, C. A. Ramsay, Y.-H. Chang, and J. O. Liu, “Molecular recognition of angiogenesis inhibitors fumagillin and ovalicin by methionine aminopeptidase 2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 26, pp. 15183–15188, 1998. View at Publisher · View at Google Scholar
  40. W. T. Lowther, A. M. Orville, D. T. Madden, S. Lim, D. H. Rich, and B. W. Matthews, “Escherichia coli methionine aminopeptidase: implications of crystallographic analyses of the native, mutant, and inhibited enzymes for the mechanism of catalysis,” Biochemistry, vol. 38, no. 24, pp. 7678–7688, 1999. View at Publisher · View at Google Scholar
  41. J. Funahashi, K. Takano, and K. Yutani, “Are the parameters of various stabilization factors estimated from mutant human lysozymes compatible with other proteins?” Protein Engineering, vol. 14, no. 2, pp. 127–134, 2001. View at Google Scholar
  42. S. F. Altschul, T. L. Madden, A. A. Schäffer et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389–3402, 1997. View at Publisher · View at Google Scholar