Table of Contents
Journal of Biophysics
Volume 2010, Article ID 179641, 12 pages
http://dx.doi.org/10.1155/2010/179641
Research Article

Exploring the Membrane Mechanism of the Bioactive Peptaibol Ampullosporin A Using Lipid Monolayers and Supported Biomimetic Membranes

1UMR 6022 CNRS Génie Enzymatique et Cellulaire, Université de Technologie de Compiègne, BP 20529, 60205 Compiègne Cedex, France
2CBMN, Chimie et Biologie des Membranes et des Nanoobjets CNRS, UMR 5248, Université de Bordeaux I, ENITAB, 33607 Pessac, France
3CNRS, UMR 5253 Institut Charles Gerhardt, Université Montpellier 2, Ecole Nationale Supérieure de Chimie de Montpellier, Université Montpellier 1, 34093 Montpellier Cedex, France
4Université de Nîmes, 30000 Nîmes, France
5INRA, UMR 1090 Génomique Diversité et Pouvoir Pathogène, 33883 Villenave d'Ornon, France
6Université de Bordeaux 2, UMR 1090 Génomique Diversité Pouvoir Pathogène, 33883 Villenave d'Ornon Cedex, France

Received 27 October 2010; Revised 9 December 2010; Accepted 20 December 2010

Academic Editor: Miguel Castanho

Copyright © 2010 Marguerita Eid et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Boheim, “Statistical analysis of alamethicin channels in black lipid membranes,” Journal of Membrane Biology, vol. 19, no. 3, pp. 277–303, 1974. View at Google Scholar · View at Scopus
  2. Z. Oren and Y. Shai, “Mode of action of linear amphipathic α-helical antimicrobial peptides,” Biopolymers, vol. 47, no. 6, pp. 451–463, 1998. View at Google Scholar · View at Scopus
  3. L. Yang, T. A. Harroun, T. M. Weiss, L. Ding, and H. W. Huang, “Barrel-stave model or toroidal model? A case study on melittin pores,” Biophysical Journal, vol. 81, no. 3, pp. 1475–1485, 2001. View at Google Scholar · View at Scopus
  4. Y. Shai, “Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides,” Biochimica et Biophysica Acta, vol. 1462, no. 1-2, pp. 55–70, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Brückner, T. Kripp, and M. Kieb, “Sequencing of new Aib-peptides by tandem mass spectrometry and automated Edman degradation,” in Peptides 1990, E. Giralt and D. Andreu, Eds., pp. 347–349, ESCOM, Leiden, The Netherlands, 1991. View at Google Scholar
  6. H. Brückner, J. Maisch, C. Reinecke, and A. Kimonyo, “Use of α-aminoisobutyric acid and isovaline as marker amino acids for the detection of fungal polypeptide antibiotics. Screening of hypocrea,” Amino Acids, vol. 1, no. 2, pp. 251–257, 1991. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Benedetti, A. Bavoso, B. Di Blasio et al., “Peptaibol antibiotics: a study on the helical structure of the 2-9 sequence of emerimicins III and IV,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 24, pp. 7951–7954, 1982. View at Google Scholar
  8. H. Bruckner and H. Graf, “Paracelsin, a peptide antibiotic containing α-aminoisobutyric acid, isolated from Trichoderma reesei Simmons. Part A,” Experientia, vol. 39, no. 5, pp. 528–530, 1983. View at Google Scholar · View at Scopus
  9. T. Degenkolb, W. Gams, and H. Brückner, “Natural cyclopeptaibiotics and related cyclic tetrapeptides: structural diversity and future prospects,” Chemistry and Biodiversity, vol. 5, no. 5, pp. 693–706, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Degenkolb, J. Kirschbaum, and H. Brückner, “New sequences, constituents, and producers of peptaibiotics: an updated review,” Chemistry and Biodiversity, vol. 4, no. 6, pp. 1052–1067, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Whitmore and B. A. Wallace, “The Peptaibol Database: a database for sequences and structures of naturally occurring peptaibols,” Nucleic Acids Research, vol. 32, pp. D593–D594, 2004. View at Google Scholar · View at Scopus
  12. M. Ritzau, S. Heinze, K. Dornberger et al., “Ampullosporin, a new peptaibol-type antibiotic from Sepedonium ampullosporum HKI-0053 with neuroleptic activity in mice,” Journal of Antibiotics, vol. 50, no. 9, pp. 722–728, 1997. View at Google Scholar · View at Scopus
  13. J. Engelberth, T. Koch, F. Kühnemann, and W. Boland, “Channel-forming peptaibols are potent elicitors of plant secondary metabolism and tendril coiling,” Angewandte Chemie—International Edition, vol. 39, no. 10, pp. 1860–1862, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Rippa, H. Adenier, M. Derbaly, and L. Béven, “The peptaibol alamethicin induces an rRNA-cleavage-associated death in Arabidopsis thaliana,” Chemistry and Biodiversity, vol. 4, no. 6, pp. 1360–1373, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Rippa, M. Eid, F. Formaggio, C. Toniolo, and L. Béven, “Hypersensitive-like response to the pore-former peptaibol alamethicin in Arabidopsis thaliana,” ChemBioChem, vol. 11, no. 14, pp. 2042–2049, 2010. View at Publisher · View at Google Scholar
  16. P. A. Grigoriev, M. Kronen, B. Schlegel, A. Härtl, and U. Gräfe, “Differences in ion-channel formation by ampullosporins B, C, D and semisynthetic desacetyltryptophanyl ampullosporin A,” Bioelectrochemistry, vol. 57, no. 2, pp. 119–121, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. T. V. Ovchinnikova, N. G. Levitskaya, O. G. Voskresenskaya et al., “Neuroleptic properties of the ion-channel-forming peptaibol zervamycin: locomotor activity and behavioral effects,” in Peptaibiotics: Fungal Peptides Containing a-Dialkyl a-Amino Acids, C. Toniolo and H. Brückner, Eds., pp. 605–618, Wiley-Vch, Zürich, Switzerland, 2009. View at Google Scholar
  18. B. Bechinger, “The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy,” Biochimica et Biophysica Acta, vol. 1462, no. 1-2, pp. 157–183, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Y. Chen, M. T. Lee, and H. W. Huang, “Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation,” Biophysical Journal, vol. 84, no. 6, pp. 3751–3758, 2003. View at Google Scholar · View at Scopus
  20. H. Duclohier and H. Wróblewski, “Voltage-dependent pore formation and antimicrobial activity by alamethicin and analogues,” Journal of Membrane Biology, vol. 184, no. 1, pp. 1–12, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. H. W. Huang and Y. Wu, “Lipid-alamethicin interactions influence alamethicin orientation,” Biophysical Journal, vol. 60, no. 5, pp. 1079–1087, 1991. View at Google Scholar · View at Scopus
  22. T. Kikukawa and T. Araiso, “Changes in lipid mobility associated with alamethicin incorporation into membranes,” Archives of Biochemistry and Biophysics, vol. 405, no. 2, pp. 214–222, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Ladha, A. R. Mackie, L. J. Harvey et al., “Lateral diffusion in planar lipid bilayers: a fluorescence recovery after photobleaching investigation of its modulation by lipid composition, cholesterol, or alamethicin content and divalent cations,” Biophysical Journal, vol. 71, no. 3, pp. 1364–1373, 1996. View at Google Scholar
  24. C. Li and T. Salditt, “Structure of magainin and alamethicin in model membranes studied by X-ray reflectivity,” Biophysical Journal, vol. 91, no. 9, pp. 3285–3300, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Wu, H. W. Huang, and G. A. Olah, “Method of oriented circular dichroism,” Biophysical Journal, vol. 57, no. 4, pp. 797–806, 1990. View at Google Scholar · View at Scopus
  26. K. He, S. J. Ludtke, W. T. Heller, and H. W. Huang, “Mechanism of alamethicin insertion into lipid bilayers,” Biophysical Journal, vol. 71, no. 5, pp. 2669–2679, 1996. View at Google Scholar · View at Scopus
  27. H. W. Huang, “Molecular mechanism of antimicrobial peptides: the origin of cooperativity,” Biochimica et Biophysica Acta, vol. 1758, no. 9, pp. 1292–1302, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. S. P. Sansom, I. D. Kerr, and I. R. Mellor, “Ion channels formed by amphipathic helical peptides,” European Biophysics Journal, vol. 20, no. 4, pp. 229–240, 1991. View at Google Scholar
  29. N. Vedovato, C. Baldini, C. Toniolo, and G. Rispoli, “Pore-forming properties of alamethicin F50/5 inserted in a biological membrane,” Chemistry and Biodiversity, vol. 4, no. 6, pp. 1338–1346, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Engelberth, T. Koch, G. Schüler, N. Bachmann, J. Rechtenbach, and W. Boland, “Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in Lima bean,” Plant Physiology, vol. 125, no. 1, pp. 369–377, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. P. A. Grigoriev, B. Schlegel, M. Kronen, A. Berg, A. Härtl, and U. Gräfe, “Differences in membrane pore formation by peptaibols,” Journal of Peptide Science, vol. 9, no. 11-12, pp. 763–768, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. T. N. Kropacheva, E. S. Salnikov, H. H. Nguyen et al., “Membrane association and activity of 15/16-membered peptide antibiotics: Zervamicin IIB, ampullosporin A and antiamoebin I,” Biochimica et Biophysica Acta, vol. 1715, no. 1, pp. 6–18, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Kronen, H. Görls, H. H. Nguyen et al., “Crystal structure and conformational analysis of ampullosporin A,” Journal of Peptide Science, vol. 9, no. 11-12, pp. 729–744, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Srinivas, D. E. Discher, and M. L. Klein, “Self-assembly and properties of diblock copolymers by coarse-grain molecular dynamics,” Nature Materials, vol. 3, no. 9, pp. 638–644, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. Z. I. Lalchev and A. R. MacKie, “Molecular lateral diffusion in model membrane systems,” Colloids and Surfaces B, vol. 15, no. 2, pp. 147–160, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. E. S. Salnikov, A. J. Mason, and B. Bechinger, “Membrane order perturbation in the presence of antimicrobial peptides by H solid-state NMR spectroscopy,” Biochimie, vol. 91, no. 6, pp. 734–743, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Lösche, “Surface-sensitive X-ray and neutron scattering characterization of planar lipid model membranes and lipid/peptide interactions,” in Current Topics in Membranes, S. A. Simon and T. J. McIntoshand, Eds., pp. 115–160, Academic Press, San Diego, Calif, USA, 2002. View at Google Scholar
  38. E. K. Sinner and W. Knoll, “Functional tethered membranes,” Current Opinion in Chemical Biology, vol. 5, no. 6, pp. 705–711, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Rossi, L. Béven, D. Ladant, and J. Chopineau, “Surface plasmon resonance spectroscopy for biomimetic membrane assembly and protein-membrane interactions studies,” in Plasmons: Theory and Applications, K. N. Helsey, Ed., Nova, New York, NY, USA, 2010. View at Google Scholar
  40. N. Papo and Y. Shai, “Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides,” Biochemistry, vol. 42, no. 2, pp. 458–466, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Rossi and J. Chopineau, “Biomimetic tethered lipid membranes designed for membrane-protein interaction studies,” European Biophysics Journal, vol. 36, no. 8, pp. 955–965, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Clementz, “Surface tension of lung extracts,” Proceedings of the Society for Experimental Biology and Medicine, vol. 95, pp. 170–172, 1957. View at Google Scholar
  43. S. Castano, B. Desbat, M. Laguerre, and J. Dufourcq, “Structure, orientation and affinity for interfaces and lipids of ideally amphipathic lytic L(i)K(j)(i=2j) peptides,” Biochimica et Biophysica Acta, vol. 1416, no. 1-2, pp. 176–194, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. M. N. G. de Mul and J. A. Mann Jr., “Determination of the thickness and optical properties of a Langmuir film from the domain morphology by Brewster angle microscopy,” Langmuir, vol. 14, no. 9, pp. 2455–2466, 1998. View at Google Scholar · View at Scopus
  45. D. Blaudez, T. Buffeteau, J. C. Cornut et al., “Polarization modulation FTIR spectroscopy at the air-water interface,” Thin Solid Films, vol. 242, no. 1-2, pp. 146–150, 1994. View at Google Scholar · View at Scopus
  46. S. Lingler, I. Rubinstein, W. Knoll, and A. Offenhäusser, “Fusion of small unilamellar lipid vesicles to alkanethiol and thiolipid self-assembled monolayers on gold,” Langmuir, vol. 13, no. 26, pp. 7085–7091, 1997. View at Google Scholar · View at Scopus
  47. C. Rossi, E. Briand, P. Parot, M. Odorico, and J. Chopineau, “Surface response methodology for the study of supported membrane formation,” Journal of Physical Chemistry B, vol. 111, no. 26, pp. 7567–7576, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Rossi, J. Homand, C. Bauche, H. Hamdi, D. Ladant, and J. Chopineau, “Differential mechanisms for calcium-dependent protein/membrane association as evidenced from SPR-binding studies on supported biomimetic membranes,” Biochemistry, vol. 42, no. 51, pp. 15273–15283, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Lang, C. Duschl, and H. Vogel, “A new class of thiolipids for the attachment of lipid bilayers on gold surfaces,” Langmuir, vol. 10, no. 1, pp. 197–210, 1994. View at Google Scholar · View at Scopus
  50. Z. Salamon and G. Tollin, “Surface plasmon resonance studies of complex formation between cytochrome c and bovine cytochrome c oxidase incorporated into a supported planar lipid bilayer. II. Binding of cytochrome c to oxidase-containing cardiolipin/phosphatidylcholine membranes,” Biophysical Journal, vol. 71, no. 2, pp. 858–867, 1996. View at Google Scholar · View at Scopus
  51. W. Knoll, “Interfaces and thin films as seen by bound electromagnetic waves,” Annual Review of Physical Chemistry, vol. 49, no. 1, pp. 569–638, 1998. View at Google Scholar · View at Scopus
  52. R. Maget-Dana, “The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes,” Biochimica et Biophysica Acta, vol. 1462, no. 1-2, pp. 109–140, 1999. View at Publisher · View at Google Scholar · View at Scopus
  53. I. Cornut, B. Desbat, J. M. Turlet, and J. Dufourcq, “In situ study by polarization modulated Fourier transform infrared spectroscopy of the structure and orientation of lipids and amphipathic peptides at the air-water interface,” Biophysical Journal, vol. 70, no. 1, pp. 305–312, 1996. View at Google Scholar · View at Scopus
  54. D. F. Kennedy, M. Crisma, C. Toniolo, and D. Chapman, “Studies of peptides forming 310- and α-helices and β-bend ribbon structures in organic solution and in model biomembranes by fourier transform infrared spectroscopy,” Biochemistry, vol. 30, no. 26, pp. 6541–6548, 1991. View at Google Scholar
  55. C. Toniolo and E. Benedetti, “The polypeptide 310-helix,” Trends in Biochemical Sciences, vol. 16, no. 9, pp. 350–353, 1991. View at Google Scholar · View at Scopus
  56. A. L. Plant, “Self-assembled phospholipid/alkanethiol biomimetic bilayers on gold,” Langmuir, vol. 9, no. 11, pp. 2764–2767, 1993. View at Google Scholar · View at Scopus
  57. J. B. Hubbard, V. Silin, and A. L. Plant, “Self assembly driven by hydrophobic interactions at alkanethiol monolayers: mechanism of formation of hybrid bilayer membranes,” Biophysical Chemistry, vol. 75, no. 3, pp. 163–176, 1998. View at Publisher · View at Google Scholar · View at Scopus
  58. C. A. Keller and B. Kasemo, “Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance,” Biophysical Journal, vol. 75, no. 3, pp. 1397–1402, 1998. View at Google Scholar · View at Scopus
  59. S. Castano and B. Desbat, “Structure and orientation study of fusion peptide FP23 of gp41 from HIV-1 alone or inserted into various lipid membrane models (mono-, bi- and multibi-layers) by FT-IR spectroscopies and Brewster angle microscopy,” Biochimica et Biophysica Acta, vol. 1715, no. 2, pp. 81–95, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. M. D. Lad, F. Birembaut, L. A. Clifton, R. A. Frazier, J. R. P. Webster, and R. J. Green, “Antimicrobial peptide-lipid binding interactions and binding selectivity,” Biophysical Journal, vol. 92, no. 10, pp. 3575–3586, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. R. Volinsky, S. Kolusheva, A. Berman, and R. Jelinek, “Investigations of antimicrobial peptides in planar film systems,” Biochimica et Biophysica Acta, vol. 1758, no. 9, pp. 1393–1407, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Kouzayha, M. N. Nasir, R. Buchet, O. Wattraint, C. Sarazin, and F. Besson, “Conformational and interfacial analyses of K3A18K3 and alamethicin in model membranes,” Journal of Physical Chemistry B, vol. 113, no. 19, pp. 7012–7019, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. H. H. Nguyen, D. Imhof, M. Kronen, U. Gräfe, and S. Reissmann, “Circular dichroism studies of ampullosporin—a analogues,” Journal of Peptide Science, vol. 9, no. 11-12, pp. 714–728, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. M. L. Mangoni, N. Papo, G. Mignogna et al., “Ranacyclins, a new family of short cyclic antimicrobial peptides: biological function, mode of action, and parameters involved in target specificity,” Biochemistry, vol. 42, no. 47, pp. 14023–14035, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. H. Mozsolits and M. I. Aguilar, “Surface plasmon resonance spectroscopy: an emerging tool for the study of peptide-membrane interactions,” Biopolymers, vol. 66, no. 1, pp. 3–18, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. H. Mozsolits, H. J. Wirth, J. Werkmeister, and M. I. Aguilar, “Analysis of antimicrobial peptide interactions with hybrid bilayer membrane systems using surface plasmon resonance,” Biochimica et Biophysica Acta, vol. 1512, no. 1, pp. 64–76, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. N. Papo and Y. Shai, “Effect of drastic sequence alteration and D-amino acid incorporation on the membrane binding behavior of lytic peptides,” Biochemistry, vol. 43, no. 21, pp. 6393–6403, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. S. T. Yang, J. Y. Lee, H. J. Kim et al., “Contribution of a central proline in model amphipathic α-helical peptides to self-association, interaction with phospholipids, and antimicrobial mode of action,” FEBS Journal, vol. 273, no. 17, pp. 4040–4054, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. T. M. Bayerl and M. Bloom, “Physical properties of single phospholipid bilayers adsorbed to micro glass beads. A new vesicular model system studied by H-nuclear magnetic resonance,” Biophysical Journal, vol. 58, no. 2, pp. 357–362, 1990. View at Google Scholar · View at Scopus
  70. S. J. Johnson, T. M. Bayerl, D. C. McDermott et al., “Structure of an adsorbed dimyristoylphosphatidylcholine bilayer measured with specular reflection of neutrons,” Biophysical Journal, vol. 59, no. 2, pp. 289–294, 1991. View at Google Scholar · View at Scopus
  71. H. Heerklotz, H. Szadkowska, T. Anderson, and J. Seelig, “The sensitivity of lipid domains to small perturbations demonstrated by the effect of triton,” Journal of Molecular Biology, vol. 329, no. 4, pp. 793–799, 2003. View at Publisher · View at Google Scholar · View at Scopus