Table of Contents
Journal of Biophysics
Volume 2011 (2011), Article ID 290617, 11 pages
http://dx.doi.org/10.1155/2011/290617
Research Article

F-Ratio Test and Hypothesis Weighting: A Methodology to Optimize Feature Vector Size

1Physics Institute, CAP, University of Zürich, CH 8057 Zürich, Switzerland
2Research Department, Cantonal Psychiatric Hospital, CH 8462 Rheinau, Switzerland
3Department of Psychology, University of Konstanz, 78457 Konstanz, Germany
4Verhaltenstherapie, Post-Straße 3, 79098 Freiburg, Germany

Received 27 December 2010; Revised 18 April 2011; Accepted 24 May 2011

Academic Editor: Serdar Kuyucak

Copyright © 2011 R. M. Dünki and M. Dressel. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. H. Stassen, “The octave approach to EEG analysis,” Methods of Information in Medicine, vol. 30, no. 4, pp. 304–310, 1991. View at Google Scholar · View at Scopus
  2. R. M. Dünki and G. B. Schmid, “Unfolding dimension and the search for functional markers in the human electroencephalogram,” Physical Review E, vol. 57, pp. 2115–2122, 1998. View at Google Scholar
  3. R. M. Dünki, G. B. Schmid, and H. H. Stassen, “Intraindividual specificity and stability of human EEG: comparing a linear vs a nonlinear approach,” Methods of Information in Medicine, vol. 39, no. 1, pp. 78–82, 2000. View at Google Scholar · View at Scopus
  4. P. Bob, J. Chladek, M. Susta, K. Glaslova, F. Jagla, and M. Kukleta, “Neural chaos and schizophrenia,” General Physiology and Biophysics, vol. 26, no. 4, pp. 298–305, 2007. View at Google Scholar · View at Scopus
  5. A. Khodayari-Rostamabad, G. M. Hasey, D. J. MacCrimmon, J. P. Reilly, and H. Bruin, “A pilot study to determine whether machine learning methodologies using pre-treatment electroencephalography can predict the symptomatic response to clozapine therapy,” Clinical Neurophysiology, vol. 121, no. 12, pp. 1998–2006, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. R. M. Dünki and M. Dressel, “Statistics of biophysical signal characteristics and state specificity of the human EEG,” Physica A, vol. 370, no. 2, pp. 632–650, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Hastie, R. J. Tibshirani, and J. Friedman, The Elements of Statistical Learning, Springer, New York, NY, USA, 2001.
  8. J. Bortz, Statistik: Für Sozialwissenschaftler, Springer, Berlin, Germany, 1989.
  9. G. B. Schmid and R. M. Dünki, “Indications of nonlinearity, intraindividual specificity and stability of human EEG: the unfolding dimension,” Physica D, vol. 93, no. 3-4, pp. 165–190, 1996. View at Google Scholar · View at Scopus
  10. H. Hotelling, “A generalized t test and measure of multivariate dispersion,” in Proceedings of the 2nd Berkely Symposium on Mathematical Statistics and Probability, J. Neyman, Ed., pp. 23–41, University of California Press, Berkeley, Calif, USA, July 1950.
  11. K. C. S. Pillai, “Some new test criteria in multivariate analysis,” The Annals of Mathematical Statistics, vol. 26, no. 1, pp. 117–121, 1955. View at Google Scholar
  12. S. N. Roy, “On a heuristic method of test construction and its use in multivariate statistics,” The Annals of Mathematical Statistics, vol. 24, no. 2, pp. 220–238, 1953. View at Google Scholar
  13. M. Kendall and A. Stuart, The Advanced Theory of Statistics, vol. 1, chapter 10, Griffin & Co., 1977.
  14. M. Fisz, Wahrscheinlichkeitstheorie und Mathematische Statistik, VEB Deutscher Verlag der Wissenschaften, Berlin, Germany, 11th edition, 1989.
  15. B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap, Chapman & Hall, London, UK, 1993.
  16. J. Shao, “On resampling methods for variance and bias estimation in linear models,” The Annals of Statistics, vol. 16, pp. 986–1006, 1988. View at Google Scholar
  17. J. Shao, “Consistency of jackknife variance estimators,” Statistics, vol. 1, pp. 49–57, 1991. View at Google Scholar
  18. M. Dressel, B. Ambühl-Braun, R. M. Dünki, P. F. Meier, and T. Elbert, “Nonlinear dynamic in the EEG of schizophrenic patients and its variation with mental tasks,” in Workshop on Chaos in Brain? K. Lehnertz, J. Arnold, P. Grassberger, and C. Elger, Eds., pp. 348–352, World Scientific, Singapore, 2000. View at Google Scholar
  19. M. Dressel, Nichtlineare Dynamik im EEG schizophrener Patienten und deren Veränderungen in Abhängigkeit von mentalen Aufgaben, Ph.D. thesis, Faculty of Social Sciences, University of Konstanz, 1999, http://deposit.ddb.de/cgi-bin/dokserv?idn=981087329&dok_var=d1&dok_ext=pdf&filename=981087329.pdf.
  20. W. S. Pritchard, “Cognitive event related potential correlates of schizophrenia,” Psychological Bulletin, vol. 100, pp. 43–66, 1986. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Cohen, “Event-related potentials and cognitive dysfunction in schizophrenia,” in Search in the Causes of Schizophrenia, H. Haefner and W. F. Gatter, Eds., vol. 2, pp. 342–360, Springer, Berlin, Germany, 1990. View at Google Scholar
  22. D. Friedmann, “Endogenous scalp-recorded brain potentials in schizophrenia: a methodological review,” in Handbook of Schizophrenia, S. R. Steinhauer, J. H. Gruzelier, and J. Zubon, Eds., pp. 91–129, Elsevier Scence, New York, NY, USA, 1991. View at Google Scholar
  23. T. Elbert and B. Rockstroh, “Threshold regulation: a key to the understanding of the combined dynamics of EEG and event-related potentials,” Journal of Psychophysiology, vol. 1, no. 4, pp. 317–333, 1987. View at Google Scholar · View at Scopus
  24. S. W. Lewis, R. A. Ford, G. M. Syed, A. M. Reveley, and B. K. Toone, “A controlled study of 99mTc-HMPAO single-photo emission imaging in chronic schizophrenia,” Psychological Medicine, vol. 22, no. 1, pp. 27–35, 1992. View at Google Scholar · View at Scopus
  25. D. A. Yurgelun-Todd, C. Waternaux, B. M. Cohen, S. Gruber, C. English, and P. Renshaw, “Functional magnetic resonance imaging of schizophrenic patients and comparison subjects during word production,” American Journal of Psychiatry, vol. 153, no. 2, pp. 200–205, 1996. View at Google Scholar · View at Scopus
  26. M. Koukkou-Lehmann, Hirnmechanismen Normalen und Schizophrenen Denkens: Eine Synthese von Theorien und Daten, Springer, Berlin, Germany, 1987.
  27. M. Koukkou, D. Lehmann, J. Wackermann, I. Dvořák, and B. Henggeler, “The dimensional complexity of EEG brain mechanisms in untreated schizophrenia,” Biological Psychiatry, vol. 33, no. 6, pp. 397–407, 1993. View at Publisher · View at Google Scholar
  28. T. Elbert, “Slow cortical potentials reflect the regulation of cortical excitability,” in Slow Potential Changes of the Human Brain, W. C. McCallum, Ed., pp. 235–251, Plenum Press, New York, NY, USA, 1990. View at Google Scholar
  29. P. D. Welch, “The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short modified periodograms,” IEEE Transactions on Audio and Electroacoustics, vol. 15, no. 2, pp. 70–73, 1967. View at Publisher · View at Google Scholar
  30. G. Winterer and W. M. Hermann, “Ueber das Elektroenzephalogramm in der Psychiatrie: eine kritische Bewertung,” Zeitschrift für Elektroenzephalographie, Elektromyographie, vol. 26, pp. 19–37, 1995. View at Google Scholar
  31. R. M. Dünki, “The estimation of the Kolmogorov entropy from a time series and its limitations when performed on EEG,” Bulletin of Mathematical Biology, vol. 53, no. 5, pp. 665–678, 1991. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Lehnertz, J. Arnold, P. Grassberger, and C. Elger, Workshop on Chaos in Brain? (1999 Bonn, Germany), World Scientific, Singapore, 2000.