Table of Contents
Journal of Biophysics
Volume 2012, Article ID 434289, 7 pages
http://dx.doi.org/10.1155/2012/434289
Research Article

Inhibitory Effects of Arginine on the Aggregation of Bovine Insulin

The Department of Physics and Astronomy, Union College, Schenectady, NY 12308, USA

Received 5 April 2012; Revised 28 May 2012; Accepted 5 June 2012

Academic Editor: Peter Schuck

Copyright © 2012 Michael M. Varughese and Jay Newman. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. M. Dobson, “Protein folding and misfolding,” Nature, vol. 426, no. 6968, pp. 884–890, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. R. M. Murphy and B. S. Kendrick, “Protein misfolding and aggregation,” Biotechnology Progress, vol. 23, no. 3, pp. 548–552, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Chiti and C. M. Dobson, “Protein misfolding, functional amyloid, and human disease,” Annual Review of Biochemistry, vol. 75, pp. 333–366, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. C. G. Glabe, “Structural classification of toxic amyloid oligomers,” The Journal of Biological Chemistry, vol. 283, no. 44, pp. 29639–29643, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. C. A. Lasagna-Reeves, C. G. Glabe, and R. Kayed, “Amyloid-β annular protofibrils evade fibrillar fate in Alzheimer disease brain,” The Journal of Biological Chemistry, vol. 286, no. 25, pp. 22122–22130, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Zako, M. Sakono, N. Hashimoto, M. Ihara, and M. Maeda, “Bovine insulin filaments induced by reducing disulfide bonds show a different morphology, secondary structure, and cell toxicity from intact insulin amyloid fibrils,” Biophysical Journal, vol. 96, no. 8, pp. 3331–3340, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. C. L. Heldt, D. Kurouski, M. Sorci, E. Grafeld, I. K. Lednev, and G. Belfort, “Isolating toxic insulin amyloid reactive species that lack B-sheets and have wide pH stability,” Biophysical Journal, vol. 100, no. 11, pp. 2792–2800, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. D. F. Waugh, “A fibrous modification of insulin. I. The heat precipitate of insulin,” Journal of the American Chemical Society, vol. 68, no. 2, pp. 247–250, 1946. View at Google Scholar · View at Scopus
  9. D. F. Waugh, D. F. Wilhelmson, S. L. Commerford, and M. L. Sackler, “Studies of the nucleation and growth reactions of selected types of insulin fibrils,” Journal of the American Chemical Society, vol. 75, no. 11, pp. 2592–2600, 1953. View at Google Scholar · View at Scopus
  10. M. Manno, E. F. Craparo, V. Martorana, D. Bulone, and P. L. San Biagio, “Kinetics of insulin aggregation: disentanglement of amyloid fibrillation from large-size cluster formation,” Biophysical Journal, vol. 90, no. 12, pp. 4585–4591, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Mauro, E. F. Craparo, A. Podestà et al., “Kinetics of different processes in human insulin amyloid formation,” Journal of Molecular Biology, vol. 366, no. 1, pp. 258–274, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Manno, D. Giacomazza, J. Newman, V. Martorana, and P. L. San Biagio, “Amyloid gels: precocious appearance of elastic properties during the formation of an insulin fibrillar network,” Langmuir, vol. 26, no. 3, pp. 1424–1426, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Nielsen, R. Khurana, A. Coats et al., “Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism,” Biochemistry, vol. 40, no. 20, pp. 6036–6046, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. J. L. Jiménez, E. J. Nettleton, M. Bouchard, C. V. Robinson, C. M. Dobson, and H. R. Saibil, “The protofilament structure of insulin amyloid fibrils,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 14, pp. 9196–9201, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. Q. Hua and M. A. Weiss, “Mechanism of insulin fibrillation: the structure of insulin under amyloidogenic conditions resembles a protein-folding intermediate,” The Journal of Biological Chemistry, vol. 279, no. 20, pp. 21449–21460, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Ahmad, V. N. Uversky, D. Hong, and A. L. Fink, “Early events in the fibrillation of monomeric insulin,” The Journal of Biological Chemistry, vol. 280, no. 52, pp. 42669–42675, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. M. R. H. Krebs, C. E. MacPhee, A. Miller, I. E. Dunlop, C. M. Dobson, and A. M. Donald, “The formation of spherulites by amyloid fibrils of bovine insulin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 40, pp. 14420–14424, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. M. R. H. Krebs, E. H. C. Bromley, S. S. Rogers, and A. M. Donald, “The mechanism of amyloid spherulite formation by bovine insulin,” Biophysical Journal, vol. 88, no. 3, pp. 2013–2021, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Librizzi and C. Rischel, “The kinetic behavior of insulin fibrillation is determined by heterogeneous nucleation pathways,” Protein Science, vol. 14, no. 12, pp. 3129–3134, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Podestà, G. Tiana, P. Milani, and M. Manno, “Early events in insulin fibrillization studied by time-lapse atomic force microscopy,” Biophysical Journal, vol. 90, no. 2, pp. 589–597, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Grudzielanek, A. Velkova, A. Shukla et al., “Cytotoxicity of insulin within its self-assembly and amyloidogenic pathways,” Journal of Molecular Biology, vol. 370, no. 2, pp. 372–384, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. M. I. Smith, J. S. Sharp, and C. J. Roberts, “Insulin fibril nucleation: the role of prefibrillar aggregates,” Biophysical Journal, vol. 95, no. 7, pp. 3400–3406, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. L. F. Pease III, M. Sorci, S. Guha et al., “Probing the nucleus model for oligomer formation during insulin amyloid fibrillogenesis,” Biophysical Journal, vol. 99, no. 12, pp. 3979–3985, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. W. Dzwolak, S. Grudzielanek, V. Smirnovas et al., “Ethanol-perturbed amyloidogenic self-assembly of insulin: looking for origins of amyloid strains,” Biochemistry, vol. 44, no. 25, pp. 8948–8958, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. R. F. Pasternack, E. J. Gibbs, S. Sibley et al., “Formation kinetics of insulin-based amyloid gels and the effect of added metalloporphyrins,” Biophysical Journal, vol. 90, no. 3, pp. 1033–1042, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. S. P. Sibley, K. Sosinsky, L. E. Gulian, E. J. Gibbs, and R. F. Pasternack, “Probing the mechanism of insulin aggregation with added metalloporphyrins,” Biochemistry, vol. 47, no. 9, pp. 2858–2865, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. T. J. Gibson and R. M. Murphy, “Inhibition of insulin fibrillogenesis with targeted peptides,” Protein Science, vol. 15, no. 5, pp. 1133–1141, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Rasmussen, M. R. Kasimova, W. Jiskoot, and M. van de Weert, “The chaperone-like protein α-crystallin dissociates insulin dimers and hexamers,” Biochemistry, vol. 48, no. 39, pp. 9313–9320, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. X. Zhang, X. Fu, H. Zhang, C. Liu, W. Jiao, and Z. Chang, “Chaperone-like activity of β-casein,” International Journal of Biochemistry & Cell Biology, vol. 37, no. 6, pp. 1232–1240, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Giger, R. P. Vanam, E. Seyrek, and P. L. Dubin, “Suppression of insulin aggregation by heparin,” Biomacromolecules, vol. 9, no. 9, pp. 2338–2344, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Shiraki, M. Kudou, S. Fujiwara, T. Imanaka, and M. Takagi, “Biophysical effect of amino acids on the prevention of protein aggregation,” Journal of Biochemistry, vol. 132, no. 4, pp. 591–595, 2002. View at Google Scholar · View at Scopus
  32. R. Ghosh, S. Sharma, and K. Chattopadhyay, “Effect of arginine on protein aggregation studied by fluorescence correlation spectroscopy and other biophysical methods,” Biochemistry, vol. 48, no. 5, pp. 1135–1143, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. B. M. Baynes, D. I. C. Wang, and B. L. Trout, “Role of arginine in the stabilization of proteins against aggregation,” Biochemistry, vol. 44, no. 12, pp. 4919–4925, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Chen, Y. Liu, Y. Wang, H. Ding, and Z. Su, “Different effects of L-arginine on protein refolding: suppressing aggregates of hydrophobic interaction, not covalent binding,” Biotechnology Progress, vol. 24, no. 6, pp. 1365–1372, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. E. M. Lyutova, A. S. Kasakov, and B. Y. Gurvits, “Effects of arginine on kinetics of protein aggregation studied by dynamic laser light scattering and tubidimetry techniques,” Biotechnology Progress, vol. 23, no. 6, pp. 1411–1416, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Shah, A. R. Shaikh, X. Peng, and R. Rajagopalan, “Effects of arginine on heat-induced aggregation of concentrated protein solutions,” Biotechnology Progress, vol. 27, no. 2, pp. 513–520, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Newman, L. A. Day, G. W. Dalack, and D. Eden, “Hydrodynamic determination of molecular weight, dimensions, and structural parameters of Pf3 virus,” Biochemistry, vol. 21, no. 14, pp. 3352–3358, 1982. View at Google Scholar · View at Scopus
  38. T. P. Knowles, C. A. Waudby, G. L. Devlin et al., “An analytical solution to the kinetics of breakable filament assembly,” Science, vol. 326, no. 5959, pp. 1533–1537, 2009. View at Publisher · View at Google Scholar
  39. Y. Kusumoto, A. Lomakin, D. B. Teplow, and G. B. Benedek, “Temperature dependence of amyloid β-protein fibrillization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 21, pp. 12277–12282, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Carrotta, M. Manno, D. Bulone, V. Martorana, and P. L. San Biagio, “Protofibril formation of amyloid β-protein at low pH via a non-cooperative elongation mechanism,” The Journal of Biological Chemistry, vol. 280, no. 34, pp. 30001–30008, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Tsumoto, M. Umetsu, I. Kumagai, D. Ejima, J. S. Philo, and T. Arakawa, “Role of arginine in protein refolding, solubilization, and purification,” Biotechnology Progress, vol. 20, no. 5, pp. 1301–1308, 2004. View at Google Scholar · View at Scopus
  42. U. Das, G. Hariprasad, A. S. Ethayathulla et al., “Inhibition of protein aggregation: supramolecular assemblies of Arginine hold the key,” PLoS ONE, vol. 2, no. 11, Article ID e1176, 2007. View at Publisher · View at Google Scholar · View at Scopus