Table of Contents
Journal of Biophysics
Volume 2012, Article ID 606172, 14 pages
http://dx.doi.org/10.1155/2012/606172
Review Article

The Aggregation of Huntingtin and α-Synuclein

1Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía, Insurgentes sur 3877 Col. la Fama, 14269 Mexico, DF, Mexico
2Departamento de Ciencias Naturales, CNI, Universidad Autónoma Metropolitana Cuajimalpa, Pedro Antonio de los Santos 84 Col. Sn. Miguel Chapultepec Deleg, Miguel Hidalgo, 11851 México, DF, Mexico

Received 22 February 2012; Revised 15 May 2012; Accepted 17 May 2012

Academic Editor: Valeria Militello

Copyright © 2012 María Elena Chánez-Cárdenas and Edgar Vázquez-Contreras. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Vázquez-Contreras, P. Ibarra Rodríguez, V. Castillo-Sánchez, and M. E. Chánez-Cárdenas, “The unfolding of proteins induced by different denaturants,” in Advances in Protein Physical Chemistry, E. García-Hernández and D. A. Fernández-Velasco, Eds., pp. 169–192, Transworld Research Network, Kerala, India, 2008. View at Google Scholar
  2. T. R. Jahn and S. E. Radford, “The Yin and Yang of protein folding,” FEBS Journal, vol. 272, no. 23, pp. 5962–5970, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Chiti, P. Webster, N. Taddei et al., “Designing conditions for in vitro formation of amyloid protofilaments and fibrils,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 7, pp. 3590–3594, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. C. M. Dobson, “Protein misfolding, evolution and disease,” Trends in Biochemical Sciences, vol. 24, no. 9, pp. 329–332, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. I. Dragatsis, M. S. Levine, and S. Zeitlin, “Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice,” Nature Genetics, vol. 26, no. 3, pp. 300–306, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Roze, F. Saudou, and J. Caboche, “Pathophysiology of Huntington's disease: from huntingtin functions to potential treatments,” Current Opinion in Neurology, vol. 21, no. 4, pp. 497–503, 2008. View at Google Scholar · View at Scopus
  7. C. L. Benn, T. Sun, G. Sadri-Vakili et al., “Huntingtin modulates transcription, occupies gene promoters in vivo, and binds directly to DNA in a polyglutamine-dependent manner,” Journal of Neuroscience, vol. 28, no. 42, pp. 10720–10733, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Zuccato, A. Ciammola, D. Rigamonti et al., “Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease,” Science, vol. 293, no. 5529, pp. 493–498, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. L. R. Gauthier, B. C. Charrin, M. Borrell-Pagès et al., “Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules,” Cell, vol. 118, no. 1, pp. 127–138, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Ciammola, J. Sassone, M. Cannella et al., “Low brain-derived neurotrophic factor (BDNF) levels in serum of Huntington's disease patients,” American Journal of Medical Genetics, Part B, vol. 144, no. 4, pp. 574–577, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. L. S. Her and L. S. B. Goldstein, “Enhanced sensitivity of striatal neurons to axonal transport defects induced by mutant huntingtin,” Journal of Neuroscience, vol. 28, no. 50, pp. 13662–13672, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. D. D. Toro, J. Alberch, F. Lazaro-Dieguez et al., “Mutant huntingtin impairs post-golgi trafficking to lysosomes by delocalizing optineurin/rab8 complex from the golgi apparatus,” Molecular Biology of the Cell, vol. 20, no. 5, pp. 1478–1492, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Sun, A. Savanenin, P. H. Reddy, and Y. F. Liu, “Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-D-aspartate receptors via post-synaptic density 95,” The Journal of Biological Chemistry, vol. 276, no. 27, pp. 24713–24718, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. M. M. Y. Fan, H. B. Fernandes, L. Y. J. Zhang, M. R. Hayden, and L. A. Raymond, “Altered NMDA receptor trafficking in a yeast artificial chromosome transgenic mouse model of Huntington's disease,” Journal of Neuroscience, vol. 27, no. 14, pp. 3768–3779, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. M. DiFiglia, E. Sapp, K. O. Chase et al., “Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain,” Science, vol. 277, no. 5334, pp. 1990–1993, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Tagawa, M. Hoshino, T. Okuda et al., “Distinct aggregation and cell death patterns among different types of primary neurons induced by mutant huntingtin protein,” Journal of Neurochemistry, vol. 89, no. 4, pp. 974–987, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. A. J. Marchut and C. K. Hall, “Spontaneous formation of annular structures observed in molecular dynamics simulations of polyglutamine peptides,” Computational Biology and Chemistry, vol. 30, no. 3, pp. 215–218, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. H. Qin and Z. L. Gu, “Huntingtin processing in pathogenesis of Huntington disease,” Acta Pharmacologica Sinica, vol. 25, no. 10, pp. 1243–1249, 2004. View at Google Scholar · View at Scopus
  19. J. Gafni, E. Hermel, J. E. Young, C. L. Wellington, M. R. Hayden, and L. M. Ellerby, “Inhibition of calpain cleavage of Huntingtin reduces toxicity: accumulation of calpain/caspase fragments in the nucleus,” The Journal of Biological Chemistry, vol. 279, no. 19, pp. 20211–20220, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Ratovitski, M. Gucek, H. Jiang et al., “Mutant huntingtin N-terminal fragments of specific size mediate aggregation and toxicity in neuronal cells,” The Journal of Biological Chemistry, vol. 284, no. 16, pp. 10855–10867, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Weiss, C. Klein, B. Woodman et al., “Sensitive biochemical aggregate detection reveals aggregation onset before symptom development in cellular and murine models of Huntington's disease,” Journal of Neurochemistry, vol. 104, no. 3, pp. 846–858, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. M. A. Poirier, H. Li, J. Macosko, S. Cai, M. Amzel, and C. A. Ross, “Huntingtin spheroids and protofibrils as precursors in polyglutamine fibrilization,” The Journal of Biological Chemistry, vol. 277, no. 43, pp. 41032–41037, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. S. H. Li and X. J. Li, “Aggregation of N-terminal huntingtin is dependent on the length of its glutamine repeats,” Human Molecular Genetics, vol. 7, no. 5, pp. 777–782, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Busch, S. Engemann, R. Lurz, H. Okazawa, H. Lehrach, and E. E. Wanker, “Mutant huntingtin promotes the fibrillogenesis of wild-type huntingtin: a potential mechanism for loss of huntingtin function in Huntington's disease,” The Journal of Biological Chemistry, vol. 278, no. 42, pp. 41452–41461, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Scherzinger, A. Sittler, K. Schweiger et al., “Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington's disease pathology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 8, pp. 4604–4609, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. D. W. Colby, J. P. Cassady, G. C. Lin, V. M. Ingram, and K. D. Wittrup, “Stochastic kinetics of intracellular huntingtin aggregate formation,” Nature Chemical Biology, vol. 2, no. 6, pp. 319–323, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. M. G. Burke, R. Woscholski, and S. N. Yaliraki, “Differential hydrophobicity drives self-assembly in Huntington's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 2, pp. 13928–13933, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Darnell, J. P. R. O. Orgel, R. Pahl, and S. C. Meredith, “Flanking polyproline sequences inhibit β-sheet Structure in polyglutamine segments by inducing PPII-like helix structure,” Journal of Molecular Biology, vol. 374, no. 3, pp. 688–704, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. S. L. H. Miller, E. L. Scappini, and J. O'Bryan, “Ubiquitin-interacting motifs inhibit aggregation of polyQ-expanded Huntingtin,” The Journal of Biological Chemistry, vol. 282, no. 13, pp. 10096–10103, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. R. de Pril, D. F. Fischer, R. A. C. Roos, and F. W. van Leeuwen, “Ubiquitin-conjugating enzyme E2-25K increases aggregate formation and cell death in polyglutamine diseases,” Molecular and Cellular Neuroscience, vol. 34, no. 1, pp. 10–19, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Goswami, P. Dikshit, A. Mishra, S. Mulherkar, N. Nukina, and N. R. Jana, “Oxidative stress promotes mutant huntingtin aggregation and mutant huntingtin-dependent cell death by mimicking proteasomal malfunction,” Biochemical and Biophysical Research Communications, vol. 342, no. 1, pp. 184–190, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Dikshit, A. Goswami, A. Mishra, N. Nukina, and N. R. Jana, “Curcumin enhances the polyglutamine-expanded truncated N-terminal huntingtin-induced cell death by promoting proteasomal malfunction,” Biochemical and Biophysical Research Communications, vol. 342, no. 4, pp. 1323–1328, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Zhou, F. Cao, Z. Wang et al., “Huntingtin forms toxic NH2-terminal fragment complexes that are promoted by the age-dependent decrease in proteasome activity,” Journal of Cell Biology, vol. 163, no. 1, pp. 109–118, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. E. Rousseau, R. Kojima, G. Hoffner, P. Djian, and A. Bertolotti, “Misfolding of proteins with a polyglutamine expansion is facilitated by proteasomal chaperones,” The Journal of Biological Chemistry, vol. 284, no. 3, pp. 1917–1929, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. J. L. Wacker, M. H. Zareie, H. Fong, M. Sarikaya, and P. J. Muchowski, “Hsp70 and Hsp40 attenuate formation of spherical and annular polyglutamine oligomers by partitioning monomer,” Nature structural & molecular biology, vol. 11, no. 12, pp. 1215–1222, 2004. View at Google Scholar · View at Scopus
  36. P. J. Muchowski, G. Schaffar, A. Sittler, E. E. Wanker, M. K. Hayer-Hartl, and F. U. Hartl, “Hsp70 and Hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 14, pp. 7841–7846, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Kitamura, H. Kubota, C. G. Pack et al., “Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state,” Nature Cell Biology, vol. 8, no. 10, pp. 1163–1170, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Nishikori, K. Yamanaka, T. Sakurai, M. Esaki, and T. Ogura, “p97 homologs from Caenorhabditis elegans, CDC-48.1 and CDC-48.2, suppress the aggregate formation of huntingtin exon1 containing expanded polyQ repeat,” Genes to Cells, vol. 13, no. 8, pp. 827–838, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Yang, C. Liu, Y. Zhong, S. Luo, M. J. Monteiro, and S. Fang, “Huntingtin interacts with the cue domain of gp78 and inhibits gp78 binding to ubiquitin and p97/VCP,” PLoS ONE, vol. 5, no. 1, article e8905, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Raychaudhuri, M. Sinha, D. Mukhopadhyay, and N. P. Bhattacharyya, “HYPK, a Huntingtin interacting protein, reduces aggregates and apoptosis induced by N-terminal Huntingtin with 40 glutamines in Neuro2a cells and exhibits chaperone-like activity,” Human Molecular Genetics, vol. 17, no. 2, pp. 240–255, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Arnesen, K. K. Starheim, P. Van Damme et al., “The chaperone-like protein HYPK acts together with natA in cotranslational N-terminal acetylation and prevention of Huntingtin aggregation,” Molecular and Cellular Biology, vol. 30, no. 8, pp. 1898–1909, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Vacher, L. Garcia-Oroz, and D. C. Rubinsztein, “Overexpression of yeast hsp104 reduces polyglutamine aggregation and prolongs survival of a transgenic mouse model of Huntington's disease,” Human Molecular Genetics, vol. 14, no. 22, pp. 3425–3433, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. U. A. Desai, J. Pallos, A. A. K. Ma et al., “Biologically active molecules that reduce polyglutamine aggregation and toxicity,” Human Molecular Genetics, vol. 15, no. 13, pp. 2114–2124, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. V. Heiser, S. Engemann, W. Bröcker et al., “Identification of benzothiazoles as potential polyglutamine aggregation inhibitors of Huntington's disease by using an automated filter retardation assay,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 4, pp. 16400–16406, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. M. A. King, S. Hands, F. Hafiz, N. Mizushima, A. M. Tolkovsky, and A. Wyttenbach, “Rapamycin inhibits polyglutamine aggregation independently of autophagy by reducing protein synthesis,” Molecular Pharmacology, vol. 73, no. 4, pp. 1052–1063, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Herbst and E. E. Wanker, “Small molecule inducers of heat-shock response reduce polyQ-mediated huntingtin aggregation: a possible therapeutic strategy,” Neurodegenerative Diseases, vol. 4, no. 2-3, pp. 254–260, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. D. W. Colby, Y. Chu, J. P. Cassady et al., “Potent inhibition of huntingtin aggregation and cytotoxicity by a disulfide bond-free single-domain intracellular antibody,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 51, pp. 17616–17621, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Sugaya, S. Matsubara, Y. Kagamihara, A. Kawata, and H. Hayashi, “Polyglutamine expansion mutation yields a pathological epitope linked to nucleation of protein aggregate: determinant of Huntington's disease onset,” PLoS ONE, vol. 2, no. 7, article e635, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Parekh-Olmedo, J. Wang, J. F. Gusella, and E. B. Kmiec, “Modified single-stranded oligonucleotides inhibit aggregate formation and toxicity induced by expanded polyglutamine,” Journal of Molecular Neuroscience, vol. 24, no. 2, pp. 257–267, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. K. S. P. McNaught and C. W. Olanow, “Protein aggregation in the pathogenesis of familial and sporadic Parkinson's disease,” Neurobiology of Aging, vol. 27, no. 4, pp. 530–545, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. W. Liu, C. Vives-Bauza, R. Acín-Peréz- et al., “PINK1 defect causes mitochondrial dysfunction, proteasomal deficit and alpha-synuclein aggregation in cell culture models of Parkinson's disease,” PLoS ONE, vol. 4, no. 2, article e4597, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Batelli, D. Albani, R. Rametta et al., “DJ-1 modulates α-synuclein aggregation state in a cellular model of oxidative stress: relevance for Parkinson's Disease and involvement of HSP70,” PLoS ONE, vol. 3, no. 4, article e1884, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Skogen, J. Roth, S. Yerkes, H. Parekh-Olmedo, and E. Kmiec, “Short G-rich oligonucleotides as a potential therapeutic for Huntington's Disease,” BMC Neuroscience, vol. 7, article 65, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. T. F. Outeiro, P. Putcha, J. E. Tetzlaff et al., “Formation of toxic oligomeric α-synuclein species in living cells,” PLoS ONE, vol. 3, no. 4, article e1867, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. V. N. Uversky, H. J. Lee, J. Li, A. L. Fink, and S. J. Lee, “Stabilization of partially folded conformation during α-synuclein oligomerization in both purified and cytosolic preparations,” The Journal of Biological Chemistry, vol. 276, no. 47, pp. 43495–43498, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. V. N. Uversky, “A protein-chameleon: conformational plasticity of α-synuclein, a disordered protein involved in neurodegenerative disorders,” Journal of Biomolecular Structure and Dynamics, vol. 21, no. 2, pp. 211–234, 2003. View at Google Scholar · View at Scopus
  57. H. T. Li, X. J. Lin, Y. Y. Xie, and H. Y. Hu, “The early events of α-synuclein oligomerization revealed by photo-induced cross-linking,” Protein and Peptide Letters, vol. 13, no. 4, pp. 385–390, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Klucken, T. F. Outeiro, P. Nguyen, P. J. McLean, and B. T. Hyman, “Detection of novel intracellular α-synuclein oligomeric species by fluorescence lifetime imaging,” FASEB Journal, vol. 20, no. 12, pp. 2050–2057, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. X. J. Lin, F. Zhang, Y. Y. Xie, W. J. Bao, J. H. He, and H. Y. Hu, “Secondary structural formation of α-synuclein amyloids as revealed by g-factor of solid-state circular dichroism,” Biopolymers, vol. 83, no. 3, pp. 226–232, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Sandal, F. Valle, I. Tessari et al., “Conformational equilibria in monomeric alpha-synuclein at the single-molecule level,” PLoS Biology, vol. 6, no. 1, article e6, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. T. Kamiyoshihara, M. Kojima, K. Uéda, M. Tashiro, and S. Shimotakahara, “Observation of multiple intermediates in α-synuclein fibril formation by singular value decomposition analysis,” Biochemical and Biophysical Research Communications, vol. 355, no. 2, pp. 398–403, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. D. Eliezer, E. Kutluay, R. Bussell, and G. Browne, “Conformational properties of α-synuclein in its free and lipid-associated states,” Journal of Molecular Biology, vol. 307, no. 4, pp. 1061–1073, 2001. View at Publisher · View at Google Scholar · View at Scopus
  63. A. C. M. Ferreon and A. A. Deniz, “α-Synuclein multistate folding thermodynamics: implications for protein misfolding and aggregation,” Biochemistry, vol. 46, no. 15, pp. 4499–4509, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. D. P. Smith, D. J. Tew, A. F. Hill et al., “Formation of a high affinity lipid-binding intermediate during the early aggregation phase of α-synuclein,” Biochemistry, vol. 47, no. 5, pp. 1425–1434, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. W. S. Woods, J. M. Boettcher, D. H. Zhou et al., “Conformation-specific binding of α-synuclein to novel protein partners detected by phage display and NMR spectroscopy,” The Journal of Biological Chemistry, vol. 282, no. 47, pp. 34555–34567, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. Z. Qin, D. Hu, S. Han, S. H. Reaney, D. A. Di Monte, and A. L. Fink, “Effect of 4-hydroxy-2-nonenal modification on α-synuclein aggregation,” The Journal of Biological Chemistry, vol. 282, no. 8, pp. 5862–5870, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. E. H. Norris, B. I. Giasson, H. Ischiropoulos, and V. M. Y. Lee, “Effects of oxidative and nitrative challenges on α-synuclein fibrillogenesis involve distinct mechanisms of protein modifications,” The Journal of Biological Chemistry, vol. 278, no. 29, pp. 27230–27240, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. C. E. H. Moussa, F. Mahmoodian, Y. Tomita, and A. Sidhu, “Dopamine differentially induces aggregation of A53T mutant and wild type α-synuclein: insights into the protein chemistry of Parkinson's disease,” Biochemical and Biophysical Research Communications, vol. 365, no. 4, pp. 833–839, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. J. R. Mazzulli, A. J. Mishizen, B. I. Giasson et al., “Cytosolic catechols inhibit α-synuclein aggregation and facilitate the formation of intracellular soluble oligomeric intermediates,” Journal of Neuroscience, vol. 26, no. 39, pp. 10068–10078, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. S. L. Leong, R. Cappai, K. J. Barnham, and C. L. L. Pham, “Modulation of α-synuclein aggregation by dopamine: a review,” Neurochemical Research, vol. 34, no. 10, pp. 1838–1846, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. J. R. Mazzulli, M. Armakola, M. Dumoulin, I. Parastatidis, and H. Ischiropoulos, “Cellular oligomerization of α-synuclein is determined by the interaction of oxidized catechols with a C-terminal sequence,” The Journal of Biological Chemistry, vol. 282, no. 43, pp. 31621–31630, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. W. J. Burke, V. B. Kumar, N. Pandey et al., “Aggregation of α-synuclein by DOPAL, the monoamine oxidase metabolite of dopamine,” Acta Neuropathologica, vol. 115, no. 2, pp. 193–203, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Ono, M. Hirohata, and M. Yamada, “Anti-fibrillogenic and fibril-destabilizing activities of anti-Parkinsonian agents for α-synuclein fibrils in vitro,” Journal of Neuroscience Research, vol. 85, no. 7, pp. 1547–1557, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. T. Näsström, S. Gonçalves, C. Sahlin et al., “Antibodies against alpha-synuclein reduce oligomerization in living cells,” PLoS One, vol. 6, no. 10, article e27230, 2011. View at Google Scholar
  75. S. M. Lynch, C. Zhou, and A. Messer, “An scFv intrabody against the nonamyloid component of α-synuclein reduces intracellular aggregation and toxicity,” Journal of Molecular Biology, vol. 377, no. 1, pp. 136–147, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Emadi, H. Barkhordarian, M. S. Wang, P. Schulz, and M. R. Sierks, “Isolation of a human single chain antibody fragment against oligomeric α-synuclein that inhibits aggregation and prevents α-synuclein-induced toxicity,” Journal of Molecular Biology, vol. 368, no. 4, pp. 1132–1144, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. S. Emadi, S. Kasturirangan, M. S. Wang, P. Schulz, and M. R. Sierks, “Detecting morphologically distinct oligomeric forms of α-synuclein,” The Journal of Biological Chemistry, vol. 284, no. 17, pp. 11048–11058, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. C. W. Bertoncini, R. M. Rasia, G. R. Lamberto et al., “Structural characterization of the intrinsically unfolded protein β-synuclein, a natural negative regulator of α-synuclein aggregation,” Journal of Molecular Biology, vol. 372, no. 3, pp. 708–722, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. Y. Fan, P. Limprasert, I. V. J. Murray et al., “β-synuclein modulates α-synuclein neurotoxicity by reducing α-synuclein protein expression,” Human Molecular Genetics, vol. 15, no. 20, pp. 3002–3011, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. A. O. Koob, K. Ubhi, J. F. Paulsson et al., “Lovastatin ameliorates α-synuclein accumulation and oxidation in transgenic mouse models of α-synucleinopathies,” Experimental Neurology, vol. 221, no. 2, pp. 267–274, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. P. Bar-On, L. Crews, A. O. Koob et al., “Statins reduce neuronal α-synuclein aggregation in in vitro models of Parkinson's disease,” Journal of Neurochemistry, vol. 105, no. 5, pp. 1656–1667, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Hirohata, K. Ono, A. Morinaga, and M. Yamada, “Non-steroidal anti-inflammatory drugs have potent anti-fibrillogenic and fibril-destabilizing effects for α-synuclein fibrils in vitro,” Neuropharmacology, vol. 54, no. 3, pp. 620–627, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. K. Ono, M. Hirohata, and M. Yamada, “Anti-fibrillogenic and fibril-destabilizing activity of nicotine in vitro: implications for the prevention and therapeutics of Lewy body diseases,” Experimental Neurology, vol. 205, no. 2, pp. 414–424, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. D. P. Hong, A. L. Fink, and V. N. Uversky, “Smoking and Parkinson's disease: does nicotine affect α-synuclein fibrillation?” Biochimica et Biophysica Acta, vol. 1794, no. 2, pp. 282–290, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. N. Pandey, J. Strider, W. C. Nolan, S. X. Yan, and J. E. Galvin, “Curcumin inhibits aggregation of α-synuclein,” Acta Neuropathologica, vol. 115, no. 4, pp. 479–489, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. K. C. Luk, I. P. Mills, J. Q. Trojanowski, and V. M. Y. Lee, “Interactions between Hsp70 and the hydrophobic core of α-synuclein inhibit fibril assembly,” Biochemistry, vol. 47, no. 47, pp. 12614–12625, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. C. Lo Bianco, J. Shorter, E. Régulier et al., “Hsp104 antagonizes α-synuclein aggregation and reduces dopaminergic degeneration in a rat model of Parkinson disease,” Journal of Clinical Investigation, vol. 118, no. 9, pp. 3087–3097, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. C. Tomás-Zapico, M. Díez-Zaera, I. Ferrer et al., “α-Synuclein accumulates in huntingtin inclusions but forms independent filaments and its deficiency attenuates early phenotype in a mouse model of Huntington's disease,” Human Molecular Genetics, vol. 21, no. 3, pp. 495–510, 2012. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Corrochano, M. Renna, C. Tomas-Zapico et al., “α-Synuclein levels affect autophagosome numbers in vivo and modulate Huntington disease pathology,” Autophagy, vol. 8, no. 3, pp. 431–432, 2012. View at Google Scholar
  90. S. Corrochano, M. Renna, S. Carter et al., “α-Synuclein levels modulate Huntington's disease in mice,” Human Molecular Genetics, vol. 21, pp. 485–494, 2012. View at Google Scholar
  91. S. A. Maskarinec and D. A. Tirrell, “Protein engineering approaches to biomaterials design,” Current Opinion in Biotechnology, vol. 16, no. 4, pp. 422–426, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. A. Saghatellan, Y. Yokobayashi, K. Soltani, and M. R. Ghadiri, “A chiroselective peptide replicator,” Nature, vol. 409, no. 6822, pp. 797–801, 2001. View at Publisher · View at Google Scholar · View at Scopus
  93. G. Bhak, S. Lee, J. W. Park, S. Cho, and S. R. Paik s, “Amyloid hydrogel derived from curly protein fibrils of α-synuclein,” Biomaterials, vol. 31, no. 23, pp. 5986–5995, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. N. Kobayashi, S. Han, C. Nakamura, and K. Sode, “Nanostructure fabrication based on engineered α-synuclein,” Nanobiotechnology, vol. 4, no. 1–4, pp. 50–55, 2008. View at Publisher · View at Google Scholar · View at Scopus