Table of Contents
Journal of Biophysics
Volume 2013, Article ID 532030, 8 pages
http://dx.doi.org/10.1155/2013/532030
Research Article

Cell Matrix Remodeling Ability Shown by Image Spatial Correlation

1Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
2Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA

Received 19 April 2013; Accepted 7 June 2013

Academic Editor: Jianwei Shuai

Copyright © 2013 Chi-Li Chiu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z. Werb and J. R. Chin, “Extracellular matrix remodeling during morphogenesis,” Annals of the New York Academy of Sciences, vol. 857, pp. 110–118, 1998. View at Google Scholar · View at Scopus
  2. D. R. Senger and G. E. Davis, “Angiogenesis,” Cold Spring Harbor Perspectives in Biology, vol. 3, no. 8, Article ID a005090, 2011. View at Google Scholar · View at Scopus
  3. M. Abercrombie, M. H. Flint, and D. W. James, “Wound contraction in relation to collagen formation in scorbutic guinea-pigs,” Journal of Embryology and Experimental Morphology, vol. 4, no. 2, pp. 167–175, 1956. View at Google Scholar
  4. P. P. Provenzano, K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely, “Collagen reorganization at the tumor-stromal interface facilitates local invasion,” BMC Medicine, vol. 4, article 38, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. B. Wyckoff, S. E. Pinner, S. Gschmeissner, J. S. Condeelis, and E. Sahai, “ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo,” Current Biology, vol. 16, no. 15, pp. 1515–1523, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. M. J. Paszek, N. Zahir, K. R. Johnson et al., “Tensional homeostasis and the malignant phenotype,” Cancer Cell, vol. 8, no. 3, pp. 241–254, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. K. R. Levental, H. Yu, L. Kass et al., “Matrix crosslinking forces tumor progression by enhancing integrin signaling,” Cell, vol. 139, no. 5, pp. 891–906, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Noda, Y. Hata, T. Hisatomi et al., “Functional properties of hyalocytes under PDGF-rich conditions,” Investigative Ophthalmology and Visual Science, vol. 45, no. 7, pp. 2107–2114, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. R.-I. Kohno, Y. Hata, S. Kawahara et al., “Possible contribution of hyalocytes to idiopathic epiretinal membrane formation and its contraction,” British Journal of Ophthalmology, vol. 93, no. 8, pp. 1020–1026, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Miura, Y. Hata, K. Hirayama et al., “Critical role of the Rho-kinase pathway in TGF-β2-dependent collagen gel contraction by retinal pigment epithelial cells,” Experimental Eye Research, vol. 82, no. 5, pp. 849–859, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. C. M. Kraning-Rush, S. P. Carey, J. P. Califano, B. N. Smith, and C. A. Reinhart-King, “The role of the cytoskeleton in cellular force generation in 2D and 3D environments,” Physical Biology, vol. 8, no. 1, Article ID 015009, 2011. View at Publisher · View at Google Scholar
  12. D. Harjanto, J. S. Maffei, and M. H. Zaman, “Quantitative analysis of the effect of cancer invasiveness and collagen concentration on 3D matrix remodeling,” PLoS One, vol. 6, no. 9, Article ID e24891, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Bayan, J. M. Levitt, E. Miller, D. Kaplan, and I. Georgakoudi, “Fully automated, quantitative, noninvasive assessment of collagen fiber content and organization in thick collagen gels,” Journal of Applied Physics, vol. 105, no. 10, Article ID 102042, 11 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. A. M. Pena, D. Fagot, C. Olive et al., “Multiphoton microscopy of engineered dermal substitutes: assessment of 3-D collagen matrix remodeling induced by fibroblast contraction,” Journal of Biomedical Optics, vol. 15, no. 5, Article ID 056018, 2010. View at Publisher · View at Google Scholar
  15. M. D. Stevenson, A. L. Sieminski, C. M. McLeod, F. J. Byfield, V. H. Barocas, and K. J. Gooch, “Pericellular conditions regulate extent of cell-mediated compaction of collagen gels,” Biophysical Journal, vol. 99, no. 1, pp. 19–28, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Roth and I. Freund, “Optical second-harmonic scattering in rat-tail tendon,” Biopolymers, vol. 20, no. 6, pp. 1271–1290, 1981. View at Google Scholar · View at Scopus
  17. E. Brown, T. McKee, E. DiTomaso et al., “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nature Medicine, vol. 9, no. 6, pp. 796–800, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 17, pp. 11014–11019, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Strupler, A.-M. Pena, M. Hernest et al., “Second harmonic imaging and scoring of collagen in fibrotic tissues,” Optics Express, vol. 15, no. 7, pp. 4054–4065, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. C. B. Raub, J. Unruh, V. Suresh et al., “Image correlation spectroscopy of multiphoton images correlates with collagen mechanical properties,” Biophysical Journal, vol. 94, no. 6, pp. 2361–2373, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. C. T. Mierke, D. Rösel, B. Fabry, and J. Brábek, “Contractile forces in tumor cell migration,” European Journal of Cell Biology, vol. 87, no. 8-9, pp. 669–676, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. M. A. Digman and E. Gratton, “Analysis of diffusion and binding in cells using the RIGS approach,” Microscopy Research and Technique, vol. 72, no. 4, pp. 323–332, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Wakatsuki, B. Schwab, N. C. Thompson, and E. L. Elson, “Effects of cytochalasin D and latrunculin B on mechanical properties of cells,” Journal of Cell Science, vol. 114, no. 5, pp. 1025–1036, 2001. View at Google Scholar · View at Scopus
  24. R. Hoekstra, F. A. L. M. Eskens, and J. Verweij, “Matrix metalloproteinase inhibitors: current developments and future perspectives,” Oncologist, vol. 6, no. 5, pp. 415–427, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Kumar, I. Z. Maxwell, A. Heisterkamp et al., “Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics,” Biophysical Journal, vol. 90, no. 10, pp. 3762–3773, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Y. Strongin, “Mislocalization and unconventional functions of cellular MMPs in cancer,” Cancer and Metastasis Reviews, vol. 25, no. 1, pp. 87–98, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Y. Li, C. F. McTiernan, and A. M. Feldman, “Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling,” Cardiovascular Research, vol. 46, no. 2, pp. 214–224, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. R. J. Bloom, J. P. George, A. Celedon, S. X. Sun, and D. Wirtz, “Mapping local matrix remodeling induced by a migrating tumor cell using three-dimensional multiple-particle tracking,” Biophysical Journal, vol. 95, no. 8, pp. 4077–4088, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. N. F. Boyd, G. S. Dite, J. Stone et al., “Heritability of mammographic density, a risk factor for breast cancer,” The New England Journal of Medicine, vol. 347, no. 12, pp. 886–894, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. D. T. Butcher, T. Alliston, and V. M. Weaver, “A tense situation: forcing tumour progression,” Nature Reviews Cancer, vol. 9, no. 2, pp. 108–122, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. M. H. Zaman, L. M. Trapani, A. Siemeski et al., “Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 29, pp. 10889–10894, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz, “High-resolution tensor MR elastography for breast tumour detection,” Physics in Medicine and Biology, vol. 45, no. 6, pp. 1649–1664, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. M. R. Ng and J. S. Brugge, “A stiff blow from the stroma: collagen crosslinking drives tumor progression,” Cancer Cell, vol. 16, no. 6, pp. 455–457, 2009. View at Publisher · View at Google Scholar · View at Scopus