Table of Contents
Journal of Biophysics
Volume 2013, Article ID 654543, 9 pages
http://dx.doi.org/10.1155/2013/654543
Research Article

Reduced Dynamic Models in Epithelial Transport

Sección Biofísica, Facultad de Ciencias, Universidad de la República, Iguá esq. Mataojo, 11400 Montevideo, Uruguay

Received 12 July 2012; Accepted 26 January 2013

Academic Editor: Andreas Herrmann

Copyright © 2013 Julio A. Hernández. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Yeaman, K. K. Grindstaff, and W. J. Nelson, “New perspectives on mechanisms involved in generating epithelial cell polarity,” Physiological Reviews, vol. 79, no. 1, pp. 73–98, 1999. View at Google Scholar · View at Scopus
  2. W. J. Nelson, “Epithelial cell polarity from the outside looking in,” News in Physiological Sciences, vol. 18, no. 4, pp. 143–146, 2003. View at Google Scholar · View at Scopus
  3. G. Whittembury and L. Reuss, “Mechanisms of coupling of solute and solvent transport in epithelia,” in The Kidney: Physiology and Pathophysiology, D. W. Seldin and G. Giebishch, Eds., pp. 317–360, Raven Press, New York, NY, USA, 2nd edition, 1992. View at Google Scholar
  4. S. G. Schultz, “A century of (epithelial) transport physiology: from vitalism to molecular cloning,” American Journal of Physiology, vol. 274, no. 1, pp. C13–C23, 1998. View at Google Scholar · View at Scopus
  5. L. G. Palmer and O. S. Andersen, “The two-membrane model of epithelial transport: Koefoed-Johnsen and Ussing (1958),” Journal of General Physiology, vol. 132, no. 6, pp. 607–612, 2008. View at Google Scholar · View at Scopus
  6. D. S. Goodsell, “Inside a living cell,” Trends in Biochemical Sciences, vol. 16, pp. 203–206, 1991. View at Google Scholar
  7. K. Luby-Phelps, “Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area,” International Review of Cytology, vol. 192, pp. 189–221, 2000. View at Google Scholar · View at Scopus
  8. J. A. Dix and A. S. Verkman, “Crowding effects on diffusion in solutions and cells,” Annual Review of Biophysics, vol. 37, pp. 247–263, 2008. View at Google Scholar
  9. H. X. Zhou, G. Rivas, and A. P. Minton, “Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences,” Annual Review of Biophysics, vol. 37, pp. 375–397, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. D. L. Ermak and J. A. McCammon, “Brownian dynamics with hydrodynamic interactions,” The Journal of Chemical Physics, vol. 69, no. 4, pp. 1352–1360, 1978. View at Google Scholar · View at Scopus
  11. M. Dlugosz and J. Trylska, “Diffusion in crowded biological environments: applications of Brownian dynamics,” BMC Biophysics, vol. 4, no. 1, article 3, 2011. View at Publisher · View at Google Scholar
  12. C. C. W. Hsia, C. J. C. Chuong, and R. L. Johnson, “Red cell distortion and conceptual basis of diffusing capacity estimates: finite element analysis,” Journal of Applied Physiology, vol. 83, no. 4, pp. 1397–1404, 1997. View at Google Scholar · View at Scopus
  13. P. Bauler, G. A. Huber, and J. A. McCammon, “Hybrid finite element and Brownian dynamics method for diffusion-controlled reactions,” Journal of Chemical Physics, vol. 136, no. 16, Article ID 164107, 2012. View at Publisher · View at Google Scholar
  14. I. I. Moraru, J. C. Schaff, B. M. Slepchenko et al., “Virtual Cell modelling and simulation software environment,” IET Systems Biology, vol. 2, no. 5, pp. 352–362, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. I. L. Novak, P. Kraikivski, and B. M. Slepchenko, “Diffusion in cytoplasm: effects of excluded volume due to internal membranes and cytoskeletal structures,” Biophysical Journal, vol. 97, no. 3, pp. 758–767, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Berkowitz and R. P. Ewing, “Percolation theory and network modeling applications in soil physics,” Surveys in Geophysics, vol. 19, no. 1, pp. 23–72, 1998. View at Publisher · View at Google Scholar
  17. C. S. Patlak, F. E. Hospod, S. D. Trowbridge, and G. C. Newman, “Diffusion of radiotracers in normal and ischemic brain slices,” Journal of Cerebral Blood Flow and Metabolism, vol. 18, no. 7, pp. 776–802, 1998. View at Google Scholar · View at Scopus
  18. S. M. Baylor and S. Hollingworth, “Model of sarcomeric Ca2+ movements, including ATP Ca2+ binding and diffusion, during activation of frog skeletal muscle,” Journal of General Physiology, vol. 112, no. 3, pp. 297–316, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. J. A. Hernández and J. C. Valle Lisboa, “Reduced kinetic models of facilitative transport,” Biochimica Et Biophysica Acta, vol. 1665, pp. 65–74, 2004. View at Google Scholar
  20. S. G. Schultz S. G, “Homocellular regulatory mechanisms in sodium-transporting epithelia: avoidance of extinction by "flush-through",” American Journal of Physiology, vol. 242, no. 6, pp. F579–F590, 1981. View at Google Scholar
  21. J. M. Diamond, “Transcellular cross-talk between epithelial cell membranes,” Nature, vol. 300, no. 5894, pp. 683–685, 1982. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Reuss and C. U. Cotton, “Volume regulation in epithelia: transcellular transport and cross-talk,” in Cellular and Molecular Physiology of Cell Volume Regulation, K. Strange, Ed., pp. 31–47, CRC Press, Boca Raton, Fla, USA, 1994. View at Google Scholar
  23. M. R. Maurya, S. J. Bornheimer, V. Venkatasubramanian, and S. Subramaniam, “Reduced-order modelling of biochemical networks: application to the GTPase-cycle signalling module,” IEE Proceedings Systems Biology, vol. 152, no. 4, pp. 229–242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. T. J. Pedley and J. Fischbarg, “Unstirred layer effects on osmotic water flow across gallbladder epithelium,” Journal of Membrane Biology, vol. 54, no. 2, pp. 89–102, 1980. View at Google Scholar · View at Scopus
  25. K. R. Spring, “Routes and mechanism of fluid transport by epithelia,” Annual Review of Physiology, vol. 60, pp. 105–119, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. A. M. Weinstein, “Dynamics of cellular homeostasis: recovery time for a perturbation from equilibrium,” Bulletin of Mathematical Biology, vol. 59, no. 3, pp. 451–481, 1997. View at Google Scholar · View at Scopus
  27. A. M. Weinstein, “Modeling epithelial cell homeostasis: assessing recovery and control mechanisms,” Bulletin of Mathematical Biology, vol. 66, no. 5, pp. 1201–1240, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. J. A. Hernández, “Stability properties of elementary dynamic models of membrane transport,” in Bulletin of Mathematical Biology, vol. 65, pp. 175–197, 2003. View at Google Scholar
  29. J. A. Hernández, “A general model for the dynamics of the cell volume,” Bulletin of Mathematical Biology, vol. 69, no. 5, pp. 1631–1648, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. T. L. Hill, Free Energy Transduction in Biology, Academic Press, New York, NY, USA, 1977.