Table of Contents
Journal of Biophysics
Volume 2015 (2015), Article ID 582091, 8 pages
http://dx.doi.org/10.1155/2015/582091
Research Article

Efficiency Enhancement of Cocktail Dye of Ixora coccinea and Tradescantia spathacea in DSSC

1Environmental and Life Sciences Programme, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
2Physical and Geological Sciences Programme, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
3Centre for Advanced Material and Energy Sciences (CAMES), Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
4Institute for Biodiversity and Environmental Research (IBER), Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam

Received 30 September 2015; Accepted 1 December 2015

Academic Editor: Jianwei Shuai

Copyright © 2015 Zularif Zolkepli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. O'Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Yusoff, N. T. R. N. Kumara, A. Lim, P. Ekanayake, and K. U. Tennakoon, “Impacts of temperature on the stability of tropical plant pigments as sensitizers for dye sensitized solar cells,” Journal of Biophysics, vol. 2014, Article ID 739514, 8 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Chang and Y.-J. Lo, “Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells,” Solar Energy, vol. 84, no. 10, pp. 1833–1837, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. C.-Y. Chen, M. Wang, J.-Y. Li et al., “Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells,” ACS Nano, vol. 3, no. 10, pp. 3103–3109, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Yella, H. W. Lee, H. N. Tsao et al., “Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency,” Science, vol. 334, pp. 629–634, 2011. View at Google Scholar · View at Scopus
  6. N. T. R. N. Kumara, P. Ekanayake, A. Lim et al., “Layered co-sensitization for enhancement of conversion efficiency of natural dye sensitized solar cells,” Journal of Alloys and Compounds, vol. 581, pp. 186–191, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Lim, N. H. Manaf, K. Tennakoon et al., “Higher performance of DSSC with dyes from Cladophora sp. as mixed cosensitizer through synergistic effect,” Journal of Biophysics, vol. 2015, Article ID 510467, 8 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Calogero, J.-H. Yum, A. Sinopoli, G. Di Marco, M. Grätzel, and M. K. Nazeeruddin, “Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells,” Solar Energy, vol. 86, no. 5, pp. 1563–1575, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Hug, M. Bader, P. Mair, and T. Glatzel, “Biophotovoltaics: natural pigments in dye-sensitized solar cells,” Applied Energy, vol. 115, pp. 216–225, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Wu, F. Meng, J. Li, X. Teng, and J. Hua, “Co-sensitization with near-IR absorbing cyanine dye to improve photoelectric conversion of dye-sensitized solar cells,” Synthetic Metals, vol. 159, no. 11, pp. 1028–1033, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. I. Iosub, F. Kajzar, M. Makowska-Janusik, A. Meghea, A. Tane, and I. Rau, “Electronic structure and optical properties of some anthocyanins extracted from grapes,” Optical Materials, vol. 34, no. 10, pp. 1644–1650, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Sonnefeld, M. Löbbus, and W. Vogelsberger, “Determination of electric double layer parameters for spherical silica particles under application of the triple layer model using surface charge density data and results of electrokinetic sonic amplitude measurements,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 195, no. 1–3, pp. 215–225, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Maniyar, P. Bhixavatimath, and N. V. Agashikar, “Antidiarrheal activity of flowers of Ixora coccinea Linn. in rats,” Journal of Ayurveda and Integrative Medicine, vol. 1, no. 4, pp. 287–291, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. P. G. Latha and K. R. Panikkar, “Cytotoxic and antitumour principles from Ixora caccinea flowers,” Cancer Letters, vol. 130, no. 1-2, pp. 197–202, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. J. C. Kurian, T. I. Varghese, and D. Isaiah, Amazing Healing Plants, Philippine Publishing House, JC Kurian Publishing, Caloocan, Philippines, 2010.
  16. Y. Ogomi, S. S. Pandey, S. Kimura, and S. Hayase, “Probing mechanism of dye double layer formation from dye-cocktail solution for dye-sensitized solar cells,” Thin Solid Films, vol. 519, no. 3, pp. 1087–1092, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Delpech, “The importance of red pigments to plant life: experiments with anthocyanins,” Journal of Biological Education, vol. 34, no. 4, pp. 206–210, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. M. M. Giusti and R. E. Wrolstad, “Characterization and measurement of anthocyanin by UV-visible spectroscopy,” in Current Protocols in Food Analytical Chemistry, pp. F1.2.1–F1.2.13, John Wiley & Sons, New York, NY, USA, 2001. View at Google Scholar
  19. J. Lee, R. W. Durst, and R. E. Wrolstad, “Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study,” Journal of AOAC International, vol. 88, no. 5, pp. 1269–1278, 2005. View at Google Scholar · View at Scopus
  20. A. Lim, N. T. R. N. Kumara, A. L. Tan et al., “Potential natural sensitizers extracted from the skin of Canarium odontophyllum fruits for dye-sensitized solar cells,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 138, pp. 596–602, 2015. View at Publisher · View at Google Scholar · View at Scopus
  21. J. M. R. C. Fernando and G. K. R. Senadeera, “Natural anthocyanins as photosensitizers for dye-sensitized solar devices,” Current Science, vol. 95, no. 5, pp. 663–666, 2008. View at Google Scholar · View at Scopus
  22. A. C. M. S. Esteban and E. P. Enriquez, “Graphene-anthocyanin mixture as photosensitizer for dye-sensitized solar cell,” Solar Energy, vol. 98, pp. 392–399, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Kopjar, V. Piližota, D. Šubarić, and J. Babić, “Prevention of thermal degradation of red currant juice anthocyanins by phenolic compounds addition,” Croatian Journal of Food Science and Technology, vol. 1, no. 1, pp. 24–30, 2009. View at Google Scholar
  24. M. R. Narayan, “Review: dye sensitized solar cells based on natural photosensitizers,” Renewable and Sustainable Energy Reviews, vol. 16, no. 1, pp. 208–215, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. N. T. R. N. Kumara, P. Ekanayake, A. Lim, M. Iskandar, and L. C. Ming, “Study of the enhancement of cell performance of dye sensitized solar cells sensitized with Nephelium lappaceum (F: Sapindaceae),” Journal of Solar Energy Engineering, vol. 135, no. 3, Article ID 031014, 5 pages, 2013. View at Publisher · View at Google Scholar
  26. P. Hoelttae, M. Hakanen, and M. Lahtinen, Silica Colloids and Their Effect on Radionuclide Sorption—Experimental Study, Posiva Oy, Helsinki, Finland, 2009.
  27. R. Katoh, A. Furube, A. V. Barzykin, H. Arakawa, and M. Tachiya, “Kinetics and mechanism of electron injection and charge recombination in dye-sensitized nanocrystalline semiconductors,” Coordination Chemistry Reviews, vol. 248, no. 13-14, pp. 1195–1213, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Xu, X. Tao, D.-T. Wang, Y.-Z. Zheng, and J.-F. Chen, “Enhanced efficiency in dye-sensitized solar cells based on TiO2 nanocrystal/nanotube double-layered films,” Electrochimica Acta, vol. 55, no. 7, pp. 2280–2285, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. K.-J. Hwang, S.-H. Jung, D.-W. Park, S.-J. Yoo, and J.-W. Lee, “Heterogeneous ruthenium dye adsorption on nano-structured TiO2 films for dye-sensitized solar cells,” Current Applied Physics, vol. 10, no. 2, pp. S184–S187, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. M. I. Kimpa, M. Momoh, K. U. Isah, H. N. Yahya, and M. M. Ndamitso, “Photoelectric characterization of dye sensitized solar cells using natural dye from pawpaw leaf and flame tree flower as sensitizers,” Materials Sciences and Applications, vol. 3, no. 5, pp. 281–286, 2012. View at Publisher · View at Google Scholar
  31. A. Hagfeldt and M. Grätzel, “Molecular photovoltaics,” Accounts of Chemical Research, vol. 33, no. 5, pp. 269–277, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Kırca and B. Cemeroğlu, “Degradation kinetics of anthocyanins in blood orange juice and concentrate,” Food Chemistry, vol. 81, no. 4, pp. 583–587, 2003. View at Publisher · View at Google Scholar · View at Scopus