Table of Contents
Journal of Blood Transfusion
Volume 2012 (2012), Article ID 365182, 7 pages
http://dx.doi.org/10.1155/2012/365182
Review Article

Potential Application of Cord Blood-Derived Stromal Cells in Cellular Therapy and Regenerative Medicine

Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, 40225 Duesseldorf, Germany

Received 15 June 2012; Accepted 5 November 2012

Academic Editor: Franz F. Wagner

Copyright © 2012 Simone Maria Kluth et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. Friedenstein, I. I. Piatetzky-Shapiro, and K. V. Petrakova, “Osteogenesis in transplants of bone marrow cells,” Journal of Embryology and Experimental Morphology, vol. 16, no. 3, pp. 381–390, 1966. View at Google Scholar · View at Scopus
  2. A. J. Friedenstein, U. F. Deriglasova, and N. N. Kulagina, “Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method,” Experimental Hematology, vol. 2, no. 2, pp. 83–92, 1974. View at Google Scholar · View at Scopus
  3. A. I. Caplan, “Mesenchymal stem cells,” Journal of Orthopaedic Research, vol. 9, no. 5, pp. 641–650, 1991. View at Google Scholar · View at Scopus
  4. M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Bianco, P. G. Robey, I. Saggio, and M. Riminucci, ““Mesenchymal” stem cells in human bone marrow (Skeletal Stem Cells): a critical discussion of their nature, identity, and significance in incurable skeletal disease,” Human Gene Therapy, vol. 21, no. 9, pp. 1057–1066, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Crisan, S. Yap, L. Casteilla et al., “A perivascular origin for mesenchymal stem cells in multiple human organs,” Cell Stem Cell, vol. 3, no. 3, pp. 301–313, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. J. E. Dennis, J. P. Carbillet, A. I. Caplan, and P. Charbord, “The STRO-1+ marrow cell population is multipotential,” Cells Tissues Organs, vol. 170, no. 2-3, pp. 73–82, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Hermida-Gómez, I. Fuentes-Boquete, M. J. Gimeno-Longas et al., “Bone marrow cells immunomagnetically selected for CD271+ antigen promote in vitro the repair of articular cartilage defects,” Tissue Engineering A, vol. 17, no. 7-8, pp. 1169–1179, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Jarocha, E. Lukasiewicz, and M. Majka, “Adventage of Mesenchymal Stem Cells (MSC) expansion directly from purified bone marrow CD105+ and CD271+ cells,” Folia Histochemica et Cytobiologica, vol. 46, no. 3, pp. 307–314, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. V. L. Battula, S. Treml, P. M. Bareiss et al., “Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1,” Haematologica, vol. 94, no. 2, pp. 173–184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Sacchetti, A. Funari, S. Michienzi et al., “Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment,” Cell, vol. 131, no. 2, pp. 324–336, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Erices, P. Conget, and J. J. Minguell, “Mesenchymal progenitor cells in human umbilical cord blood,” British Journal of Haematology, vol. 109, no. 1, pp. 235–242, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Yamamoto, H. Akamatsu, S. Hasegawa et al., “Isolation of multipotent stem cells from mouse adipose tissue,” Journal of Dermatological Science, vol. 48, no. 1, pp. 43–52, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Gluckman, H. E. Broxmeyer, A. D. Auerbach et al., “Hematopoietic reconstitution in a patient with Fanconi's anemia by means of umbilical-cord blood from an HLA-identical sibling,” The New England Journal of Medicine, vol. 321, no. 17, pp. 1174–1178, 1989. View at Google Scholar · View at Scopus
  15. G. Kögler, S. Sensken, J. A. Airey et al., “A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential,” Journal of Experimental Medicine, vol. 200, no. 2, pp. 123–135, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Liedtke, J. Enczmann, S. Waclawczyk, P. Wernet, and G. Kögler, “Oct4 and its pseudogenes confuse stem cell research,” Cell Stem Cell, vol. 1, no. 4, pp. 364–366, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. S. M. Kluth, A. Buchheiser, A. P. Houben et al., “DLK-1 as a marker to distinguish unrestricted somatic stem cells and mesenchymal stromal cells in cord blood,” Stem Cells and Development, vol. 19, no. 10, pp. 1471–1483, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. K. S. Jeltsch, T. F. Radke, S. Laufs et al., “Unrestricted somatic stem cells: interaction with CD34+ cells in vitro and in vivo, expression of homing genes and exclusion of tumorigenic potential,” Cytotherapy, vol. 13, no. 3, pp. 357–365, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. C. M. Smas and Hei Sook Sul, “Pref-1, a protein containing EGF-like repeats, inhibits adipocyte differentiation,” Cell, vol. 73, no. 4, pp. 725–734, 1993. View at Publisher · View at Google Scholar · View at Scopus
  20. C. M. Smas, D. Green, and H. S. Sul, “Structural characterization and alternate splicing of the gene encoding the preadipocyte EGF-like protein pref-1,” Biochemistry, vol. 33, no. 31, pp. 9257–9265, 1994. View at Google Scholar · View at Scopus
  21. C. H. Jensen, T. N. Krogh, P. Hojrup et al., “Protein structure of fetal antigen 1 (FA1)—a novel circulating human epidermal-growth-factor-like protein expressed in neuroendocrine tumors and its relation to the gene products of dlk and pG2,” European Journal of Biochemistry, vol. 225, no. 1, pp. 83–92, 1994. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Yevtodiyenko and J. V. Schmidt, “Dlk1 expression marks developing endothelium and sites of branching morphogenesis in the mouse embryo and placenta,” Developmental Dynamics, vol. 235, no. 4, pp. 1115–1123, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. S. Moon, C. M. Smas, K. Lee et al., “Mice lacking paternally expressed Pref-1/Dlk1 display growth retardation and accelerated adiposity,” Molecular and Cellular Biology, vol. 22, no. 15, pp. 5585–5592, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Floridon, C. H. Jensen, P. Thorsen et al., “Does Fetal antigen 1 (FA1) identify cells with regenerative, endocrine and neuroendocrine potentials? A study of FA1 in embryonic, fetal, and placental tissue and in maternal circulation,” Differentiation, vol. 66, no. 1, pp. 49–59, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. B. M. Abdallah, C. H. Jensen, G. Gutierrez, R. G. Q. Leslie, T. G. Jensen, and M. Kassem, “Regulation of human skeletal stem cells differentiation by Dlk1/Pref-1,” Journal of Bone and Mineral Research, vol. 19, no. 5, pp. 841–852, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Chen, D. Qanie, A. Jafari et al., “like 1/fetal antigen-1 (Dlk1/FA1) is a novel regulator of chondrogenic cell differentiation via inhibition of the AKT-dependent pathway,” The Journal of Biological Chemistry, vol. 286, no. 37, pp. 32140–32149, 2011. View at Google Scholar
  27. Y. Wang and H. S. Sul, “Pref-1 regulates mesenchymal cell commitment and differentiation through Sox9,” Cell Metabolism, vol. 9, no. 3, pp. 287–302, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Liedtke, A. Buchheiser, J. Bosch et al., “The HOX Code as a “biological fingerprint” to distinguish functionally distinct stem cell populations derived from cord blood,” Stem Cell Research, vol. 5, no. 1, pp. 40–50, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Krumlauf, “Hox genes in vertebrate development,” Cell, vol. 78, no. 2, pp. 191–201, 1994. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Leucht, J. B. Kim, R. Amasha, A. W. James, S. Girod, and J. A. Helms, “Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration,” Development, vol. 135, no. 17, pp. 2845–2854, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Bosch, A. P. Houben, T. F. Radke et al., “Differentiation potential of, “MSC” derived from cord blood and umbilical cord: are cord-derived cells true mesenchymal stromal cells?” Stem Cells and Development, vol. 21, no. 11, pp. 1977–1988, 2012. View at Google Scholar
  32. G. Kögler, T. F. Radke, A. Lefort et al., “Cytokine production and hematopoiesis supporting activity of cord blood-derived unrestricted somatic stem cells,” Experimental Hematology, vol. 33, no. 5, pp. 573–583, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. K. C. Russell, D. G. Phinney, M. R. Lacey, B. L. Barrilleaux, K. E. Meyertholen, and K. C. O'Connor, “In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment,” Stem Cells, vol. 28, no. 4, pp. 788–798, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. B. Johnstone, T. M. Hering, A. I. Caplan, V. M. Goldberg, and J. U. Yoo, “In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells,” Experimental Cell Research, vol. 238, no. 1, pp. 265–272, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Dazey, P. Duchez, C. Letellier, G. Vezon, and Z. Ivanovic, “Cord blood processing by using a standard manual technique and automated closed system “sepax” (Kit CS-530),” Stem Cells and Development, vol. 14, no. 1, pp. 6–10, 2005. View at Google Scholar · View at Scopus
  36. M. Aktas, A. Buchheiser, A. Houben et al., “Good manufacturing practice-grade production of unrestricted somatic stem cell from fresh cord blood,” Cytotherapy, vol. 12, no. 3, pp. 338–348, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Lammers, C. Naujoks, K. Berr et al., “Impact of DAG stimulation on mineral synthesis, mineral structure and osteogenic differentiation of human cord blood stem cells,” Stem Cell Research, vol. 8, no. 2, pp. 193–205, 2012. View at Google Scholar
  38. J. Handschel, C. Naujoks, F. Langenbach et al., “Comparison of ectopic bone formation of embryonic stem cells and cord blood stem cells in vivo,” Tissue Engineering A, vol. 16, no. 8, pp. 2475–2483, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Greschat, J. Schira, P. Küry et al., “Unrestricted somatic stem cells from human umbilical cord blood can be differentiated into neurons with a dopaminergic phenotype,” Stem Cells and Development, vol. 17, no. 2, pp. 221–232, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Schira, M. Gasis, V. Estrada et al., “Significant clinical, neuropathological and behavioural recovery from acute spinal cord trauma by transplantation of a well-defined somatic stem cell from human umbilical cord blood,” Brain, vol. 135, part 2, pp. 431–446, 2012. View at Google Scholar
  41. Z. Ding, S. Burghoff, A. Buchheiser et al., “Survival, integration and differentiation of unrestricted somatic stem cells (USSCs) in the heart,” Cell Transplant. In press.
  42. A. Ghodsizad, M. Niehaus, G. Kögler et al., “Transplanted human cord blood-derived unrestricted somatic stem cells improve left-ventricular function and prevent left-ventricular dilation and scar formation after acute myocardial infarction,” Heart, vol. 95, no. 1, pp. 27–35, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Ghodsizad, M. N. Ungerer, V. Bordel et al., “Transplanted human cord blood-derived unrestricted somatic stem cells preserve high-energy reserves at the site of acute myocardial infarction,” Cytotherapy, vol. 13, no. 8, pp. 956–961, 2011. View at Google Scholar
  44. S. Sensken, S. Waclawczyk, A. S. Knaupp et al., “In vitro differentiation of human cord blood-derived unrestricted somatic stem cells towards an endodermal pathway,” Cytotherapy, vol. 9, no. 4, pp. 362–378, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Waclawczyk, A. Buchheiser, U. Flögel, T. F. Radke, and G. Kögler, “In vitro differentiation of unrestricted somatic stem cells into functional hepatic-like cells displaying a hepatocyte-like glucose metabolism,” Journal of Cellular Physiology, vol. 225, no. 2, pp. 545–554, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Ghodsizad, B. N. Fahy, S. Waclawczyk et al., “Portal application of human unrestricted somatic stem cells to support hepatic regeneration after portal embolization and tumor surgery,” Asaio Journal, vol. 58, no. 3, pp. 255–261, 2012. View at Google Scholar
  47. N. Kaltz, A. Funari, S. Hippauf et al., “In vivo osteoprogenitor potency of human stromal cells from different tissues does not correlate with expression of POU5F1 or its pseudogenes,” Stem Cells, vol. 26, no. 9, pp. 2419–2424, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. K. E. Mitchell, M. L. Weiss, B. M. Mitchell et al., “Matrix cells from Wharton's jelly form neurons and glia,” Stem Cells, vol. 21, no. 1, pp. 50–60, 2003. View at Google Scholar · View at Scopus
  49. R. Sarugaser, D. Lickorish, D. Baksh, M. M. Hosseini, and J. E. Davies, “Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors,” Stem Cells, vol. 23, no. 2, pp. 220–229, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Reinisch and D. Strunk, “Isolation and animal serum free expansion of human umbilical cord derived mesenchymal stromal cells (MSCs) and endothelial colony forming progenitor cells (ECFCs),” Journal of Visualized Experiments, no. 32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. B. Péault, M. Rudnicki, Y. Torrente et al., “Stem and progenitor cells in skeletal muscle development, maintenance, and therapy,” Molecular Therapy, vol. 15, no. 5, pp. 867–877, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. B. J. H. Jansen, C. Gilissen, H. Roelofs et al., “Functional differences between mesenchymal stem cell populations are reflected by their transcriptome,” Stem Cells and Development, vol. 19, no. 4, pp. 481–489, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Kim, J. M. Shin, Y. J. Jeon et al., “Proteomic validation of multifunctional molecules in mesenchymal stem cells derived from human bone marrow, umbilical cord blood and peripheral blood,” PLoS One, vol. 7, no. 5, article e32350, 2012. View at Google Scholar