Table of Contents
Journal of Blood Transfusion
Volume 2013, Article ID 896537, 8 pages
http://dx.doi.org/10.1155/2013/896537
Research Article

An Efficient Apparatus for Rapid Deoxygenation of Erythrocyte Concentrates for Alternative Banking Strategies

Department of Ecological and Biological Sciences, Tuscia University, Largo dell'Università, snc, 01100 Viterbo, Italy

Received 3 September 2012; Revised 15 January 2013; Accepted 23 January 2013

Academic Editor: Erwin Strasser

Copyright © 2013 Lello Zolla and Angelo D'Alessandro. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. R. Hess, “Red cell storage,” Journal of Proteomics, vol. 73, no. 3, pp. 368–373, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. A. D'Alessandro, G. Liumbruno, G. Grazzini, and L. Zolla, “Red blood cell storage: the story so far,” Blood Transfusion, vol. 8, no. 2, pp. 82–88, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. European Directorate for the Quality of Medicines, “Guide to the preparation, use and quality assurance of blood components,” Recommendation no. 95, 15-16th Edition. Council of Europe, 2011.
  4. C. G. Koch, L. Li, D. I. Sessler et al., “Duration of red-cell storage and complications after cardiac surgery,” The New England Journal of Medicine, vol. 358, no. 12, pp. 1229–1239, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. L. Vincent, C. Lelubre, and M. Piagnerelli, “Association between duration of storage of transfused red blood cells and morbidity and mortality in adult patients: myth or reality?” Transfusion, vol. 49, no. 7, pp. 1384–1394, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. D. A. Fergusson, P. Hébert, D. L. Hogan et al., “Effect of fresh red blood cell transfusions on clinical outcomes in premature, very low-birth-weight infants: the ARIPI randomized trial,” JAMA, vol. 308, no. 14, pp. 1443–1451, 2012. View at Publisher · View at Google Scholar
  7. W. A. Flegel, “Fresh blood for transfusion: how old is too old for red blood cell units?” Blood Transfusion, vol. 10, no. 3, pp. 247–251, 2012. View at Google Scholar
  8. E. Bennett-Guerrero, T. H. Veldman, A. Doctor et al., “Evolution of adverse changes in stored RBCs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 43, pp. 17063–17068, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. A. D'Alessandro, G. M. D'Amici, S. Vaglio, and L. Zolla, “Time-course investigation of SAGM-stored leukocyte-filtered erythrocyte concentrates: from metabolism to proteomics,” Haematologica, vol. 97, no. 1, pp. 107–115, 2012. View at Publisher · View at Google Scholar
  10. C. R. Valeri and N. M. Hirsch, “Restoration in vivo of erythrocyte adenosine triphosphate, 2,3-diphosphoglycerate, potassium ion, and sodium ion concentrations following the transfusion of acid-citrate-dextrose-stored human red blood cells,” The Journal of Laboratory and Clinical Medicine, vol. 73, no. 5, pp. 722–733, 1969. View at Google Scholar · View at Scopus
  11. O. Rubin, D. Crettaz, J. D. Tissot, and N. Lion, “Microparticles in stored red blood cells: Submicron clotting bombs?” Blood Transfusion, vol. 8, no. 3, pp. s31–s38, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. G. J. C. G. M. Bosman, E. Lasonder, M. Luten et al., “The proteome of red cell membranes and vesicles during storage in blood bank conditions,” Transfusion, vol. 48, no. 5, pp. 827–835, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. G. M. D'Amici, S. Rinalducci, and L. Zolla, “Proteomic analysis of RBC membrane protein degradation during blood storage,” Journal of Proteome Research, vol. 6, no. 8, pp. 3242–3255, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Rinalducci, G. M. D'Amici, B. Blasi, S. Vaglio, G. Grazzini, and L. Zolla, “Peroxiredoxin-2 as a candidate biomarker to test oxidative stress levels of stored red blood cells under blood bank conditions,” Transfusion, vol. 51, no. 7, pp. 1439–1449, 2011. View at Publisher · View at Google Scholar
  15. M. Antonelou, A. Kriebardis, K. Stamoulis, L. Margaritis, I. Trougakos, and I. Papassideri, “Secretory apolipoprotein J/Clusterin is an integral component of human erythrocytes and a novel biomarker of vesiculation and senescence in vivo and in stored red cells,” in Proceedings of the 31st International Congress of the International Society of Blood Transfusion (ISBT '10), vol. 99, p. 213, Vox Sanquinis, Berlin, Germany, 2010.
  16. R. Chaudhary and R. Katharia, “Oxidative injury as contributory factor for red cells storage lesion during twenty eight days of storage,” Blood Transfusion, vol. 10, no. 1–4, pp. 59–62, 2011. View at Google Scholar
  17. D. Shemin and D. Rittenberg, “The life span of the human red blood cell,” The Journal of Biological Chemistry, vol. 166, no. 2, pp. 627–636, 1946. View at Google Scholar
  18. J. Racek, R. Herynková, V. Holecek, Z. Jerábek, and V. Sláma, “Influence of antioxidants on the quality of stored blood,” Vox Sanguinis, vol. 72, no. 1, pp. 16–19, 1997. View at Publisher · View at Google Scholar
  19. L. J. Dumont, T. Yoshida, and J. P. AuBuchon, “Anaerobic storage of red blood cells in a novel additive solution improves in vivo recovery,” Transfusion, vol. 49, no. 3, pp. 458–464, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Yoshida, J. P. AuBuchon, L. J. Dumont et al., “The effects of additive solution pH and metabolic rejuvenation on anaerobic storage of red cells,” Transfusion, vol. 48, no. 10, pp. 2096–2105, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Yoshida and S. S. Shevkoplyas, “Anaerobic storage of red blood cells,” Blood Transfusion, vol. 8, no. 4, pp. 220–236, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. W. H. Forbes and F. J. Roughton, “The equilibrium between oxygen and haemoglobin: I. The oxygen dissociation curve of dilute blood solutions,” The Journal of Physiology, vol. 71, no. 3, pp. 229–260, 1931. View at Google Scholar
  23. S. C. Glauser and R. E. Forster 2nd, “pH dependence of the oxyhemoglobin dissociation curve at high oxygen tension,” Journal of Applied Physiology, vol. 22, no. 1, pp. 113–116, 1967. View at Google Scholar · View at Scopus
  24. P. Astrup, K. Engel, J. W. Severinghaus, and E. Munson, “The influence of temperature and pH on the dissociation curve of oxyhemoglobin of human blood,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 17, no. 6, pp. 515–523, 1965. View at Google Scholar · View at Scopus
  25. T. Elssner, M. Kostrzewa, T. Maier, and G. Kruppa, “Microorganism identification based on MALDI-TOF-MS fingerprints,” NATO Science for Peace and Security Series A, pp. 99–113, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Harboe, “A method for determination of hemoglobin in plasma by near-ultraviolet spectrophotometry,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 11, no. 1, pp. 66–70, 1959. View at Google Scholar · View at Scopus
  27. O. Rubin, J. Delobel, M. Prudent et al., “Red blood cell-derived microparticles isolated from blood units initiate and propagate thrombin generation,” Transfusion, 2012. View at Publisher · View at Google Scholar
  28. A. Givan, “Flow cytometry,” in Methods in Molecular Biology: Flow Cytometry Protocols, T. S. Hawley and R. G. Hawley, Eds., Humana Press, Totowa, NJ, USA, 2011. View at Google Scholar
  29. C. F. Högman, H. Löf, and H. T. Meryman, “Storage of red blood cells with improved maintenance of 2,3-bisphosphoglycerate,” Transfusion, vol. 46, no. 9, pp. 1543–1552, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. J. K. Tusa and H. He, “Critical care analyzer with fluorescent optical chemosensors for blood analytes,” Journal of Materials Chemistry, vol. 15, no. 27-28, pp. 2640–2647, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Blasi, A. D'Alessandro, N. Ramundo, and L. Zolla, “Red blood cell storage and cell morphology,” Transfusion Medicine, vol. 22, no. 2, pp. 90–96, 2012. View at Publisher · View at Google Scholar
  32. A. D'Alessandro, F. Gevi, and L. Zolla, “Red blood cell metabolism under prolonged anaerobic storage,” Molecular BioSystems, 2013. View at Publisher · View at Google Scholar
  33. F. Gevi, A. D'Alessandro, S. Rinalducci, and L. Zolla, “Alterations of red blood cell metabolome during cold liquid storage of erythrocyte concentrates in CPD-SAGM,” Journal of Proteomics, vol. 76, pp. 168–180, 2012. View at Publisher · View at Google Scholar