Table of Contents
Journal of Catalysts
Volume 2013, Article ID 376078, 7 pages
http://dx.doi.org/10.1155/2013/376078
Research Article

New Porphyrin/Fe-Loaded TiO2 Composites as Heterogeneous Photo-Fenton Catalysts for the Efficient Degradation of 4-Nitrophenol

1Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Via Arnesano, 73100 Lecce, Italy
2Dipartimento di Ingegneria Elettrica, Elettronica e delle Telecomunicazioni, di tecnologie Chimiche, Automatica e modelli Matematici (DIEETCAM) Università di Palermo, Viale delle Scienze, Edificio 6, 90128 Palermo, Italy

Received 20 August 2012; Revised 14 November 2012; Accepted 15 November 2012

Academic Editor: Cláudia Gomes Silva

Copyright © 2013 Giuseppe Mele et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. R. Gogate and A. B. Pandit, “A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions,” Advances in Environmental Research, vol. 8, no. 3-4, pp. 501–551, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. J. J. Pignatello, E. Oliveros, and A. MacKay, “Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry,” Critical Reviews in Environmental Science and Technology, vol. 36, no. 1, pp. 1–84, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Kiwi, C. Pulgarin, and P. Peringer, “Effect of Fenton and photo-Fenton reactions on the degradation and biodegradability of 2 and 4-nitrophenols in water treatment,” Applied Catalysis B, vol. 3, no. 4, pp. 335–350, 1994. View at Google Scholar · View at Scopus
  4. M. Schiavello, Ed., Photocatalysis and Environment: Trends and Applications, Kluwer Academic, Dodrecht, The Netherlands, 1988.
  5. V. Augugliaro, L. Palmisano, A. Sclafani, C. Minero, and E. Pelizzetti, “Photocatalytic degradation of phenol in aqueous titanium dioxide dispersions,” Environmental Toxicology and Chemistry, vol. 16, no. 2, pp. 89–109, 1988. View at Publisher · View at Google Scholar
  6. D. F. Ollis, E. Pelizzetti, and N. Serpone, “Photocatalyzed destruction of water contaminants,” Environmental Science & Technology, vol. 25, no. 9, pp. 1522–1529, 1991. View at Google Scholar · View at Scopus
  7. J. A. H. Meliàn, J. M. Dona Rodrìguez, A. V. Suàrez et al., “The photocatalytic disinfection of urban waste waters,” Chemosphere, vol. 41, pp. 323–327, 2000. View at Google Scholar
  8. G. Palmisano, V. Augugliaro, M. Pagliaro, and L. Palmisano, “Photocatalysis: a promising route for 21st century organic chemistry,” Chemical Communications, no. 33, pp. 3425–3437, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. S. J. Kim, S. C. Kim, S. G. Seo et al., “Photocatalyzed destruction of organic dyes using microwave/UV/O3/H2O2/TiO2 oxidation system,” Catalysis Today, vol. 164, no. 1, pp. 384–390, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Dixit, A. J. Tirpude, A. K. Mungray, and M. Chakraborty, “Degradation of 2, 4 DCP by sequential biological-advanced oxidation process using UASB and UV/TiO2/H2O2,” Desalination, vol. 272, no. 1–3, pp. 265–269, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Zou and J. Gao, “H2O2-sensitized TiO2/SiO2 composites with high photocatalytic activity under visible irradiation,” Journal of Hazardous Materials, vol. 185, no. 2-3, pp. 710–716, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Carbajo, C. Adán, A. Rey, A. Martínez-Arias, and A. Bahamonde, “Optimization of H2O2 use during the photocatalytic degradation of ethidium bromide with TiO2 and iron-doped TiO2 catalysts,” Applied Catalysis B, vol. 102, no. 1-2, pp. 85–93, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Marcì, E. García-López, G. Mele, L. Palmisano, G. Dyrda, and R. Słota, “Comparison of the photocatalytic degradation of 2-propanol in gas-solid and liquid-solid systems by using TiO2-LnPc2 hybrid powders,” Catalysis Today, vol. 143, no. 3-4, pp. 203–210, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Mele, R. Del Sole, G. Vasapollo et al., “TiO2-based photocatalysts impregnated with metallo-porphyrins employed for degradation of 4-nitrophenol in aqueous solutions: role of metal and macrocycle,” Research on Chemical Intermediates, vol. 33, no. 3–5, pp. 433–448, 2007. View at Google Scholar · View at Scopus
  15. C. Wang, G. M. Yang, J. Li et al., “Novel meso-substituted porphyrins: synthesis, characterization and photocatalytic activity of their TiO2-based composites,” Dyes and Pigments, vol. 80, no. 3, pp. 321–328, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Mele, E. Garcìa-Lòpez, L. Palmisano, G. Dyrda, and R. Słota, “Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with lanthanide double-decker phthalocyanine complexes,” The Journal of Physical Chemistry C, vol. 111, no. 17, pp. 6581–6588, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Słota, G. Dyrda, K. Szczegot, G. Mele, and I. Pio, “Photocatalytic activity of nano and microcrystalline TiO2 hybrid systems involving phthalocyanine or porphyrin sensitizers,” Photochemical & Photobiological Sciences, vol. 10, no. 3, pp. 361–366, 2011. View at Google Scholar
  18. M. Y. Duan, J. Li, G. Mele et al., “Photocatalytic activity of novel tin porphyrin/TiO2 based composites,” The Journal of Physical Chemistry C, vol. 114, no. 17, pp. 7857–7862, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Wang, J. Li, G. Mele et al., “Efficient degradation of 4-nitrophenol by using functionalized porphyrin-TiO2 photocatalysts under visible irradiation,” Applied Catalysis B, vol. 76, no. 3-4, pp. 218–226, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Mele, R. Del Sole, G. Vasapollo, E. García-López, L. Palmisano, and M. Schiavello, “Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO2 impregnated with functionalized Cu(II) -porphyrin or Cu(II)-phthalocyanine,” Journal of Catalysis, vol. 217, no. 2, pp. 334–342, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Zhao, G. Mele, I. Pio, J. Li, L. Palmisano, and G. Vasapollo, “Degradation of 4-nitrophenol (4-NP) using Fe-TiO2 as a heterogeneous photo-Fenton catalyst,” Journal of Hazardous Materials, vol. 176, no. 1–3, pp. 569–574, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Sakthivel, M. Janczarek, and H. Kisch, “Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2,” The Journal of Physical Chemistry B, vol. 108, no. 50, pp. 19384–19387, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Granados-Oliveros, E. A. Páez-Mozo, F. M. Ortega, C. Ferronato, and J. M. Chovelon, “Degradation of atrazine using metalloporphyrins supported on TiO2 under visible light irradiation,” Applied Catalysis B, vol. 89, no. 3-4, pp. 448–454, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. Z. Mesgaria, M. Gharagozlou, A. Khosravi, and K. Gharanjig, “Spectrophotometric studies of visible light induced photocatalytic degradation of methyl orange using phthalocyanine-modified Fe-doped TiO2 nanocrystals,” Spectrochimica Acta A, vol. 92, pp. 148–153, 2012. View at Google Scholar
  25. I. Zebger, L. Poulsen, Z. Gao, L. K. Andersen, and P. R. Ogilby, “Singlet oxygen images of heterogeneous samples: examining the effect of singlet oxygen diffusion across the interfacial boundary in phase-separated liquids and polymers,” Langmuir, vol. 19, no. 21, pp. 8927–8933, 2003. View at Publisher · View at Google Scholar · View at Scopus