Table of Contents
Journal of Catalysts
Volume 2013, Article ID 392162, 8 pages
http://dx.doi.org/10.1155/2013/392162
Research Article

Microwave-Assisted Synthesis of Spirofused Heterocycles Using Decatungstodivanadogermanic Heteropoly Acid as a Novel and Reusable Heterogeneous Catalyst under Solvent-Free Conditions

Laboratory of Heterocycles, School of Studies in Chemistry and Biochemistry, Vikram University, Ujjain 456010, Madhya Pradesh, India

Received 8 October 2012; Accepted 7 January 2013

Academic Editor: Mohammed M. Bettahar

Copyright © 2013 Srinivasa Rao Jetti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. O. Kappe, W. M. F. Fabian, and M. A. Semones, “Conformational analysis of 4-aryl-dihydropyrimidine calcium channel modulators. A comparison of ab initio, semiempirical and X-ray crystallographic studies,” Tetrahedron, vol. 53, no. 8, pp. 2803–2816, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. G. C. Rovnyak, S. D. Kimball, B. Beyer et al., “Calcium entry blockers and activators: conformational and structural determinants of dihydropyrimidine calcium channel modulators,” Journal of Medicinal Chemistry, vol. 38, no. 1, pp. 119–129, 1995. View at Google Scholar · View at Scopus
  3. B. B. Snider and Z. Shi, “Biomimetic syntheses of (±)-crambines A, B, C1, and C2. Revision of the structures of crambines B and C1,” Journal of Organic Chemistry, vol. 58, no. 15, pp. 3828–3839, 1993. View at Google Scholar · View at Scopus
  4. C. O. Kappe, “100 years of the Biginelli dihydropyrimidine synthesis,” Tetrahedron, vol. 49, no. 32, pp. 6937–6963, 1993. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Barluenga, M. Tomás, A. Ballesteros, and L. A. López, “1,4-Cycloaddition of 1,3-diazabutadienes with enamines: an efficient route to the pyrimidine ring,” Tetrahedron Letters, vol. 30, no. 34, pp. 4573–4576, 1989. View at Google Scholar · View at Scopus
  6. S. R. Jetti, D. Verma, and S. Jain, “NBS/AIBN promoted one-pot multi component regioselective synthesis of spiro heterobicyclic rings via Biginelli-like condensation reaction,” Journal of Chemical and Pharmaceutical Research, vol. 4, no. 5, pp. 2373–2379, 2012. View at Google Scholar
  7. S. R. Jetti, D. Verma, and S. Jain, “An efficient one-pot green protocol for the synthesis of 5-unsubstituted 3, 4-dihydropyrimidin-2(1H)-ones using recyclable amberlyst 15 DRY as a heterogeneous catalyst via three-component Biginelli-like reaction,” ISRN Organic Chemistry, vol. 2012, Article ID 480989, 8 pages, 2012. View at Publisher · View at Google Scholar
  8. S. Panda, K. Siva, K. Pankaj, and Leena, “Biginelli reaction: a green perspective,” Current Organic Chemistry, vol. 16, no. 4, pp. 507–520, 2012. View at Publisher · View at Google Scholar
  9. Suresh and S. J. Sandhu, “Past, present and future of the Biginelli reaction: a critical perspective,” Arkivoc, vol. 1, pp. 66–133, 2012. View at Google Scholar
  10. A. Borse, P. Mahesh, P. Nilesh, and S. Rohan, “A green, expeditious, one-pot synthesis of 3, 4-dihydropyrimidin-2(1H)-ones using a mixture of phosphorus pentoxide-methanesulfonic acid at ambient temperature,” ISRN Organic Chemistry, vol. 2012, Article ID 415645, 6 pages, 2012. View at Publisher · View at Google Scholar
  11. D. Abdelmadjid, C. Louisa, B. Raouf, and C. Bertrand, “A one-pot multi-component synthesis of dihydropyrimidinone/thione and dihydropyridine derivatives via Biginelli and Hantzsch condensations using t-BuOK as a catalyst under solvent-free conditions,” The Open Organic Chemistry Journal, vol. 6, pp. 12–20, 2012. View at Publisher · View at Google Scholar
  12. T. Reza, M. Behrooz, and G. Malihe, “Ammonium dihydrogen phosphate catalyst for one-pot synthesis of 3, 4-dihydropyrimidin-2(1H)-ones,” Chinese Journal of Catalysis, vol. 33, no. 4–6, pp. 659–665, 2012. View at Publisher · View at Google Scholar
  13. S. Agarwal, U. Aware, A. Patil et al., “Silica-gel catalyzed facile synthesis of 3, 4-dihydropyrimidinones,” Bulletin of Korean Chemical Society, vol. 33, no. 2, pp. 377–378, 2012. View at Publisher · View at Google Scholar
  14. R. Hekmatshoar, M. Heidari, M. M. Heravi, and B. Baghernejad, “Mesoporous molecular sieve MCM-41 catalyzed one-pot synthesis of 3,4-dihydro-2(1H)-pyrimidinones and -thiones under solvent-free conditions,” Bulletin of the Chemical Society of Ethiopia, vol. 25, no. 2, pp. 309–313, 2011. View at Google Scholar · View at Scopus
  15. J. A. Kumar, C. Shanmugam, and P. H. Babu, “One pot synthesis of dihydropyrimidinones catalyzed by Cyanuric chloride: an improved procedure for the Biginelli reaction,” Der Pharma Chemica, vol. 3, no. 4, pp. 292–297, 2011. View at Google Scholar
  16. B. F. Mirjalili, A. Bamoniri, and A. Akbari, “One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones (thiones) promoted by nano-BF3.SiO2,” Journal of the Iranian Chemical Society, vol. 8, no. 1, pp. S135–S140, 2011. View at Google Scholar · View at Scopus
  17. M. Zeinali-Dastmalbaf, A. Davoodnia, M. M. Heravi, N. Tavakoli-Hoseini, A. Khojastehnezhad, and H. A. Zamani, “Silica gel-supported polyphosphoric acid (PPA-SiO2) catalyzed one-pot multi-component synthesis of 3, 4-dihydropyrimidin-2(1H)-ones and -thiones: an efficient method for the Biginelli reaction,” Bulletin of the Korean Chemical Society, vol. 32, no. 2, pp. 656–658, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. C. V. Reddy, M. Mahesh, P. V. K. Raju, T. R. Babu, and V. V. N. Reddy, “Zirconium(IV) chloride catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones,” Tetrahedron Letters, vol. 43, no. 14, pp. 2657–2659, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Y. Fu, Y. F. Yuan, Z. Cao, S. W. Wang, J. T. Wang, and C. Peppe, “Indium(III) bromide-catalyzed preparation of dihydropyrimidinones: improved protocol conditions for the Biginelli reaction,” Tetrahedron, vol. 58, no. 24, pp. 4801–4807, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Dondoni and A. Massi, “Parallel synthesis of dihydropyrimidinones using Yb(III)-resin and polymer-supported scavengers under solvent-free conditions. A green chemistry approach to the Biginelli reaction,” Tetrahedron Letters, vol. 42, no. 45, pp. 7975–7978, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Peng and Y. Deng, “Ionic liquids catalyzed Biginelli reaction under solvent-free conditions,” Tetrahedron Letters, vol. 42, no. 34, pp. 5917–5919, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. J. S. Yadav, B. V. S. Reddy, K. B. Reddy, K. S. Raj, and A. R. Prasad, “Ultrasound-accelerated synthesis of 3,4-dihydropyrimidin-2(1H)-ones with ceric ammonium nitrate,” Journal of the Chemical Society, no. 16, pp. 1939–1941, 2001. View at Google Scholar · View at Scopus
  23. K. A. Kumar, M. Kasthuraiah, C. S. Reddy, and C. D. Reddy, “Mn(OAc)3·2H2O-mediated three-component, one-pot, condensation reaction: an efficient synthesis of 4-aryl-substituted 3,4-dihydropyrimidin-2-ones,” Tetrahedron Letters, vol. 42, no. 44, pp. 7873–7875, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Ma, C. Qian, L. Wang, and M. Yang, “Lanthanide triflate catalyzed biginelli reaction. One-pot synthesis of dihydropyrimidinones under solvent-free conditions,” Journal of Organic Chemistry, vol. 65, no. 12, pp. 3864–3868, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. B. C. Ranu, A. Hajra, and U. Jana, “Indium(III) chloride-catalyzed one-pot synthesis of dihydropyrimidinones by a three-component coupling of 1,3-dicarbonyl compounds, aldehydes, and urea: an improved procedure for the Biginelli reaction,” Journal of Organic Chemistry, vol. 65, no. 19, pp. 6270–6272, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Lu, Y. Bai, Z. Wang, B. Yang, and H. Ma, “One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones using lanthanum chloride as a catalyst,” Tetrahedron Letters, vol. 41, no. 47, pp. 9075–9078, 2000. View at Google Scholar · View at Scopus
  27. J. C. Bussolari and P. A. McDonnell, “A new substrate for the Biginelli cyclocondensation: direct preparation of 5-unsubstituted 3,4-dihydropyrimidin-2(1H)-ones from a β-keto carboxylic acid,” Journal of Organic Chemistry, vol. 65, no. 20, pp. 6777–6779, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Bigi, S. Carloni, B. Frullanti, R. Maggi, and G. Sartori, “A revision of the biginelli reaction under solid acid catalysis. Solvent-free synthesis of dihydropyrimidines over montmorillonite KSF,” Tetrahedron Letters, vol. 40, no. 17, pp. 3465–3468, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. C. O. Kappe, D. Kumar, and R. S. Varma, “Microwave-assisted high-speed parallel synthesis of 4-aryl-3,4- dihydropyrimidin-2(1H)-ones using a solventless biginelli condensation protocol,” Synthesis, no. 10, pp. 1799–1803, 1999. View at Google Scholar · View at Scopus
  30. E. H. Hu, D. R. Sidler, and U. H. Dolling, “Unprecedented catalytic three component one-pot condensation reaction: an efficient synthesis of 5-alkoxycarbonyl-4-aryl-3,4-dihydropyrimidin- 2(1H)-ones,” Journal of Organic Chemistry, vol. 63, no. 10, pp. 3454–3457, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. K. S. Atwal, G. C. Rovnyak, B. C. O'Reilly, and J. Schwartz, “Substituted 1,4-dihydropyrimidines. 3. Synthesis of selectively functionalized 2-hetero-1,4-dihydropyrimidines,” Journal of Organic Chemistry, vol. 54, no. 25, pp. 5898–5907, 1989. View at Google Scholar · View at Scopus
  32. V. I. Saloutin, Y. V. Burgart, O. G. Kuzueva, C. O. Kappe, and O. N. Chupakhin, “Biginelli condensations of fluorinated 3-oxo esters and 1,3-diketones,” Journal of Fluorine Chemistry, vol. 103, no. 1, pp. 17–23, 2000. View at Google Scholar · View at Scopus
  33. I. V. Kozhevnikov, “Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions,” Chemical Reviews, vol. 98, no. 1, pp. 171–198, 1998. View at Google Scholar · View at Scopus
  34. I. V. Kozhevnikov, “Sustainable heterogeneous acid catalysis by heteropoly acids,” Journal of Molecular Catalysis A, vol. 262, no. 1-2, pp. 86–92, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Saeid and P. Somayeh, “Decatungstodivanadogermanic heteropoly acid (H6GeW10V2O40. 22H2O): a novel, green and reusable catalyst for efficient acetylation of alcohols and phenols under solvent-free conditions,” European Journal of Chemistry, vol. 1, no. 4, pp. 335–340, 2010. View at Publisher · View at Google Scholar
  36. Y. Zhu, Y. Pan, and S. Huang, “Trimethylsilyl chloride: a facile and efficient reagent for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones,” Synthetic Communications, vol. 34, no. 17, pp. 3167–3174, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. S. R. Jetti, D. Verma, and S. Jain, “Carbon-based solid acid as an efficient and reusable catalyst for the synthesis of 4, 6-diarylpyrimidin-2(1H)-ones under solvent-free conditions,” Der Chemica Sinica, vol. 3, no. 3, pp. 636–640, 2012. View at Google Scholar
  38. J. S. Rao, G. N. Babu, P. Pradeep, B. Anjna, T. Kadre, and J. Shubha, “Amberlyst 15 DRY resin: a green and recyclable catalyst for facile and efficient one-pot synthesis of 3, 4-dihydropyrimidin-2(1H)-ones,” Der Pharma Chemica, vol. 4, no. 1, pp. 417–427, 2012. View at Google Scholar
  39. T. Kadre, S. R. Jetti, A. Bhatewara, P. Paliwal, and S. Jain, “Green protocol for the synthesis of 3, 4-Dihydropyrimidin-2(1H)-ones/thiones using TBAB as a catalyst and solvent free condition under microwave irradiation,” Archives of Applied Science Research, vol. 4, no. 2, pp. 988–993, 2012. View at Google Scholar
  40. P. Pradeep, J. S. Rao, and J. Shubha, “DABCO promoted multi-component one-pot synthesis of xanthene derivatives,” Research Journal of Chemical Sciences, vol. 2, no. 8, pp. 21–25, 2012. View at Google Scholar
  41. Q. Wu, Q. Chen, X. Cai, J. Wang, and J. Zhang, “Preparation and conductivity of solid high-proton conductor silica gel containing 80wt.% decatungstodivanadogermanic acid,” Materials Letters, vol. 61, no. 3, pp. 663–665, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. Q. Y. Wu, S. K. Wang, D. N. Li, and X. F. Xie, “Preparation and characterization of decatungstomolybdoniobogermanic heteropoly acid H5[GeW10MoNbO40] · 20H2O,” Inorganic Chemistry Communications, vol. 5, no. 5, pp. 308–311, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. U. B. Mioe, M. R. Todorovic, S. M. Uskokovic-Markovic et al., “Structure and proton conductivity in a magnesium salt of 12-tungstophosphoric acid,” Solid State Ionics, vol. 162-163, no. EX-1-EX-8, pp. 217–223, 2003. View at Publisher · View at Google Scholar
  44. G. Byk, H. E. Gottlieb, J. Herscovici, and F. Mirkin, “New regioselective multicomponent reaction: one pot synthesis of spiro heterobicyclic aliphatic rings,” Journal of Combinatorial Chemistry, vol. 2, no. 6, pp. 732–735, 2000. View at Google Scholar · View at Scopus