Table of Contents
Journal of Catalysts
Volume 2013, Article ID 467846, 5 pages
http://dx.doi.org/10.1155/2013/467846
Research Article

Structure and Reverse Hydrogen Spillover in Mononuclear Au0 and AuI Complexes Bonded to Faujasite Zeolite: A Density Functional Study

Department of Physics, Girijananda Chowdhury Institute of Management and Technology, Hatkhowapara, Azara, Guwahati, Assam 781017, India

Received 31 January 2013; Revised 6 May 2013; Accepted 8 May 2013

Academic Editor: Jianqin Zhuang

Copyright © 2013 Ajanta Deka. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Haruta, “Size- and support-dependency in the catalysis of gold,” Catalysis Today, vol. 36, no. 1, pp. 153–166, 1997. View at Google Scholar · View at Scopus
  2. Q. Fu, H. Saltsburg, and M. Flytzani-Stephanopoulos, “Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts,” Science, vol. 301, no. 5635, pp. 935–938, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. E. E. Stangland, K. B. Stavens, R. P. Andres, and W. N. Delgass, “Characterization of gold-titania catalysts via oxidation of propylene to propylene oxide,” Journal of Catalysis, vol. 191, no. 2, pp. 332–347, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Nkosi, M. D. Adams, N. J. Coville, and G. J. Hutchings, “Hydrochlorination of acetylene using carbon-supported gold catalysts: a study of catalyst reactivation,” Journal of Catalysis, vol. 128, no. 2, pp. 378–386, 1991. View at Google Scholar · View at Scopus
  5. M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, “Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide,” Journal of Catalysis, vol. 115, no. 2, pp. 301–309, 1989. View at Google Scholar · View at Scopus
  6. A. S. K. Hashmi and G. J. Hutchings, “Gold catalysis,” Angewandte Chemie International Edition, vol. 45, no. 47, pp. 7896–7936, 2006. View at Publisher · View at Google Scholar
  7. G. N. Vayssilov and N. Rösch, “Reverse hydrogen spillover in supported subnanosize clusters of the metals of groups 8 to 11. A computational model study,” Physical Chemistry Chemical Physics, vol. 7, no. 23, pp. 4019–4026, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. W. A. Weber and B. C. Gates, “Hexarhodium clusters in NaY zeolite: characterization by infrared and extended X-ray absorption fine structure spectroscopies,” The Journal of Physical Chemistry B, vol. 101, no. 49, pp. 10423–10434, 1997. View at Google Scholar · View at Scopus
  9. G. N. Vayssilov and N. Rösch, “Free and zeolite-supported hexarhodium clusters with light impurity atoms,” Journal of Physical Chemistry B, vol. 108, no. 1, pp. 180–192, 2004. View at Google Scholar · View at Scopus
  10. M. N. Mikhailov, I. V. Mishin, and L. M. Kustov, “A possible mechanism of hydrogen reverse spillover in platinum-zeolite catalysts,” Catalysis Letters, vol. 128, pp. 313–317, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. R. C. Deka, A. Deka, and A. Miyamoto, “Density functional studies on the structure and reverse hydrogen spillover in Au6 cluster supported on zeolite,” Catalysis Letters, vol. 131, no. 1-2, pp. 155–159, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J. C. Fierro-Gonzalez and B. C. Gates, “Mononuclear AuIII and AuI complexes bonded to zeolite NaY: catalysts for CO oxidation at 298 K,” Journal of Physical Chemistry B, vol. 108, no. 44, pp. 16999–17002, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Löwenstein, “The distribution of aluminium in the tetrahedra of silicates and aluminates,” American Mineralogist, vol. 39, no. 1-2, pp. 92–96, 1954. View at Google Scholar
  14. D. H. Olson, “The crystal structure of dehydrated NaX,” Zeolites, vol. 15, no. 5, pp. 439–443, 1995. View at Google Scholar · View at Scopus
  15. B. Delley, “An all-electron numerical method for solving the local density functional for polyatomic molecules,” The Journal of Chemical Physics, vol. 92, no. 1, pp. 508–517, 1990. View at Google Scholar · View at Scopus
  16. B. Delley and D. E. Ellis, “Efficient and accurate expansion methods for molecules in local density models,” The Journal of Chemical Physics, vol. 76, no. 4, pp. 1949–1960, 1982. View at Google Scholar · View at Scopus
  17. S. J. Vosko, L. Wilk, and M. Nusair, “Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis,” Canadian Journal of Physics, vol. 58, no. 8, pp. 1200–1211, 1980. View at Publisher · View at Google Scholar
  18. A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior,” Physical Review A, vol. 38, no. 6, pp. 3098–3100, 1988. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Physical Review B, vol. 37, no. 2, pp. 785–789, 1988. View at Publisher · View at Google Scholar · View at Scopus
  20. J. C. Fierro-Gonzalez, Y. Hao, and B. C. Gates, “Gold xanoclusters entrapped in the α-cages of y zeolites: structural characterization by X-ray absorption spectroscopy,” Journal of Physical Chemistry C, vol. 111, no. 18, pp. 6645–6651, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. R. C. Deka and S. Baishya, “Density functional investigation of reverse hydrogen spillover on zeolite supported Pd6 and Au6 clusters,” Catalysis Today, vol. 198, no. 1, pp. 110–115, 2012. View at Publisher · View at Google Scholar