Table of Contents
Journal of Catalysts
Volume 2013 (2013), Article ID 723903, 7 pages
http://dx.doi.org/10.1155/2013/723903
Research Article

Regioselective Thiocyanation of Aromatic and Heteroaromatic Compounds Using [2-(Sulfooxy)ethyl]sulfamic Acid as an Efficient, Recyclable Organocatalyst and Novel Difunctional Brønsted Acid

1Department of Chemistry, Payame Noor University, P.O. Box 19395-4697, Tehran, Iran
2Department of Chemistry, Faculty of Sciences, Islamic Azad University, Ilam Branch, Ilam, Iran

Received 14 August 2013; Accepted 16 October 2013

Academic Editor: Mohammed M. Bettahar

Copyright © 2013 Sami Sajjadifar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. R. Kiasat, F. Kazemi, and M. F. Mehrjardi, “Basic alumina as an efficient catalyst for preparation of semicarbazones in solvent free conditions,” Journal of the Chinese Chemical Society, vol. 54, no. 5, pp. 1337–1339, 2007. View at Google Scholar · View at Scopus
  2. A. R. Kiasat, F. Kazemi, and M. F. Mehrjardi, “Synthesis of semicarbazones from carbonyl compounds under solvent free conditions,” Asian Journal of Chemistry, vol. 17, no. 4, pp. 2830–2832, 2005. View at Google Scholar · View at Scopus
  3. B. F. Mirjalili, M. A. Zolfigol, A. Bamoniri, and A. Hazar, “Al(HSO4)3 as an efficient catalyst for acetalization of carbonyl compounds under heterogeneous or solvent-free conditions,” Journal of the Brazilian Chemical Society, vol. 16, no. 4, pp. 877–880, 2005. View at Google Scholar · View at Scopus
  4. P. Salehi, M. Dabiri, M. A. Zolfigol, and M. A. B. Fard, “Silica sulfuric acid as an efficient and reusable reagent for crossed-aldol condensation of ketones with aromatic aldehydes under solvent-free conditions,” Journal of the Brazilian Chemical Society, vol. 15, no. 5, pp. 773–776, 2004. View at Google Scholar · View at Scopus
  5. P. Salehi, M. A. Zolfigol, F. Shirini, and M. Baghbanzadeh, “Silica sulfuric acid and silica chloride as efficient reagents for organic reactions,” Current Organic Chemistry, vol. 10, no. 17, pp. 2171–2189, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Merino, E. Marqués-López, T. Tejero, and R. P. Herrera, “Organocatalyzed Strecker reactions,” Tetrahedron, vol. 65, no. 7, pp. 1219–1234, 2009. View at Publisher · View at Google Scholar
  7. P. I. Dalko and L. Moisan, “In the golden age of organocatalysis,” Angewandte Chemie, vol. 43, no. 39, pp. 5138–5175, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Pellissier, “Asymmetric organocatalysis,” Tetrahedron, vol. 63, no. 38, pp. 9267–9331, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. M. G. Dekamin, S. Sagheb-Asl, and M. Reza Naimi-Jamal, “An expeditious synthesis of cyanohydrin trimethylsilyl ethers using tetraethylammonium 2-(carbamoyl)benzoate as a bifunctional organocatalyst,” Tetrahedron Letters, vol. 50, no. 28, pp. 4063–4066, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Shen, X. Feng, Y. Li, G. Zhang, and Y. Jiang, “A mild and efficient cyanosilylation of ketones catalyzed by a Lewis acid-Lewis base bifunctional catalyst,” Tetrahedron, vol. 59, no. 30, pp. 5667–5675, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. X. Pan, M. Lei, J. Zou, and W. Zhang, “Mn(OAc)3-promoted regioselective free radical thiocyanation of indoles and anilines,” Tetrahedron Letters, vol. 50, no. 3, pp. 347–349, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. R. G. Guy, “Syntheses and preparative applications of thiocyanates,” in The Chemistry of the Cyanates and Their Thio Derivatives, S. Patai, Ed., pp. 819–886, Wiley Interscience, New York, NY, USA, 1977. View at Publisher · View at Google Scholar
  13. T. Billard, B. R. Langlois, and M. Médebielle, “Tetrakis(dimethylamino)ethylene (TDAE) mediated addition of difluoromethyl anions to heteroaryl thiocyanates. A new simple access to heteroaryl-SCF2R derivatives,” Tetrahedron Letters, vol. 42, no. 20, pp. 3463–3465, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. R. G. Mehta, J. Liu, A. Constantinou et al., “Cancer chemopreventive activity of brassinin, a phytoalexin from cabbage,” Carcinogenesis, vol. 16, no. 2, pp. 399–404, 1995. View at Google Scholar · View at Scopus
  15. O. Prakash, H. Kaur, H. Batra, N. Rani, S. P. Singh, and R. M. Moriarty, “α-thiocyanation of carbonyl and β-dicarbonyl compounds using (dichloroiodo)benzene-lead(II) thiocyanate,” Journal of Organic Chemistry, vol. 66, no. 6, pp. 2019–2023, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Shahidi, “Thioglucosides of Brassica oilseeds and their process-induced chemical transformations,” in Sulfur Compounds in Foods, C. J. Mussinan and M. E. Keelan, Eds., chapter 9, pp. 106–126, American Chemical Society, Washington, DC, USA, 1994. View at Google Scholar
  17. Z. Zhang and L. S. Liebeskind, “Palladium-catalyzed, copper(I)-mediated coupling of boronic acids and benzylthiocyanate. A cyanide-free cyanation of boronic acids,” Organic Letters, vol. 8, no. 19, pp. 4331–4333, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Riemschneider, “Thiocarbamates and related compounds. X. A new reaction of thiocyanates,” Journal of the American Chemical Society, vol. 78, no. 4, pp. 844–847, 1956. View at Google Scholar · View at Scopus
  19. R. Riemschneider, F. Wojahn, and G. Orlick, “Thiocarbamates. III. Aryl thiocarbamates from aryl thiocyanates,” Journal of the American Chemical Society, vol. 73, no. 12, pp. 5905–5907, 1951. View at Google Scholar · View at Scopus
  20. Y. T. Lee, S. Y. Choi, and Y. K. Chung, “Microwave-assisted palladium-catalyzed regioselective cyanothiolation of alkynes with thiocyanates,” Tetrahedron Letters, vol. 48, no. 32, pp. 5673–5677, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. S. Grant and H. R. Snyder, “Thiocyanation of indole. Some reactions of 3-thiocyanoindole,” Journal of American Chemical Society, vol. 82, pp. 2742–2744, 1960. View at Publisher · View at Google Scholar
  22. E. Söderbäck, “Über katalytische Rhodanierung von aromatischen Kernen,” Acta Chemica Scandinavica, vol. 8, pp. 1851–1858, 1954. View at Publisher · View at Google Scholar
  23. G. Wu, Q. Liu, Y. Shen, W. Wu, and L. Wu, “Regioselective thiocyanation of aromatic and heteroaromatic compounds using ammonium thiocyanate and oxone,” Tetrahedron Letters, vol. 46, no. 35, pp. 5831–5834, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. F. D. Toste, V. De Stefano, and I. W. J. Still, “A versatile procedure for the preparation of aryl thiocyanates using N-thiocyanatosuccinimide (NTS),” Synthetic Communications, vol. 25, no. 8, pp. 1277–1286, 1995. View at Google Scholar · View at Scopus
  25. V. Nair, T. G. George, L. G. Nair, and S. B. Panicker, “A direct synthesis of aryl thiocyanates using cerium(IV) ammonium nitrate,” Tetrahedron Letters, vol. 40, no. 6, pp. 1195–1196, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Chakrabarty and S. Sarkar, “A clay-mediated eco-friendly thiocyanation of indoles and carbazoles,” Tetrahedron Letters, vol. 44, no. 44, pp. 8131–8133, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. J. S. Yadav, B. V. S. Reddy, S. Shubashree, and K. Sadashiv, “Iodine/MeOH: a novel and efficient reagent system for thiocyanation of aromatics and heteroaromatics,” Tetrahedron Letters, vol. 45, no. 14, pp. 2951–2954, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Iranpoor, H. Firouzabadi, D. Khalili, and R. Shahin, “A new application for diethyl azodicarboxylate: efficient and regioselective thiocyanation of aromatics amines,” Tetrahedron Letters, vol. 51, no. 27, pp. 3508–3510, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Iranpoor, H. Firouzabadi, and R. Azadi, “A new diphenylphosphinite ionic liquid (IL-OPPh2) as reagent and solvent for highly selective bromination, thiocyanation or isothiocyanation of alcohols and trimethylsilyl and tetrahydropyranyl ethers,” Tetrahedron Letters, vol. 47, no. 31, pp. 5531–5534, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. K. H. Chaudhari, U. S. Mahajan, D. S. Bhalerao, and K. G. Akamanchi, “Novel and facile transformation of N,N-disubstituted glycylamides into corresponding cyanamides by using pentavalent iodine reagents in combination with tetraethylammonium bromide,” Synlett, no. 18, pp. 2815–2818, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. J. S. Yadav, B. V. S. Reddy, and B. B. M. Krishna, “IBX: a novel and versatile oxidant for electrophilic thiocyanation of indoles, pyrrole and arylamines,” Synthesis, no. 23, pp. 3779–3782, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. J. S. Yadav, B. V. S. Reddy, A. D. Krishna, C. S. Reddy, and A. V. Narsaiah, “Ferric(III) chloride-promoted electrophilic thiocyanation of aromatic and heteroaromatic compounds,” Synthesis, no. 6, pp. 961–964, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Kumar, P. Ahamd, and R. A. Maurya, “Direct α-thiocyanation of carbonyl and β-dicarbonyl compounds using potassium peroxydisulfate-copper(II),” Tetrahedron Letters, vol. 48, no. 8, pp. 1399–1401, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. J. S. Yadav, B. V. S. Reddy, and Y. J. Reddy, “1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2,2,2]octane bis(tetrafluoroborate) as novel and versatile reagent for the rapid thiocyanation of indoles, azaindole, and carbazole,” Chemistry Letters, vol. 37, pp. 652–653, 2008. View at Publisher · View at Google Scholar
  35. A. Khazaei, M. A. Zolfigol, M. Mokhlesi, and M. Pirveysian, “Citric acid as a trifunctional organocatalyst for thiocyanation of aromatic and heteroaromatic compounds in aqueous media,” Canadian Journal of Chemistry, vol. 90, no. 5, pp. 427–432, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. E. Rezaee Nezhad, F. Heidarizadeh, S. Sajjadifar, and Z. Abbasi, “Dispersing of petroleum asphaltenes by acidic ionic liquid and determination by UV-visible spectroscopy,” Journal of Petroleum Engineering, vol. 2013, Article ID 203036, 5 pages, 2013. View at Publisher · View at Google Scholar
  37. S. Sajjadifar, “Boron sulfonic acid (2008–2012),” International Journal of ChemTech Research, vol. 5, pp. 385–389, 2013. View at Google Scholar
  38. S. Sajjadifar, E. Rezaee Nezhad, and G. Darvishi, “1-methyl-3-(2-(sulfooxy)ethyl)-1H-imidazol-3-ium chloride as a new and green ionic liquid catalyst for one-pot synthesis of dihydropyrimidinones under solvent-free condition,” Journal of Chemistry, vol. 2013, Article ID 834656, 6 pages, 2013. View at Publisher · View at Google Scholar
  39. S. Sajjadifar, M. A. Zolfigol, G. Chehardoli, S. Miri, and P. Moosavi, “Qinoxaline II. A practical efficient and rapid synthesis of new quinoxalines catalyzed by citric acid as a trifunctional Bronsted acid at room temperature under green condition,” International Journal of ChemTech Research, vol. 5, pp. 422–429, 2013. View at Google Scholar
  40. M. A. Zolfigol, H. Vahedi, A. Massoudi, S. Sajjadifar, O. Louie, and N. Javaherneshan, “Mild and efficient one pot synthesis of benzimidazoles from aldehydes by using BSA as a new catalyst,” Clinical Biochemistry, vol. 44, supplement, no. 13, pp. S219–S219, 2011. View at Google Scholar
  41. M. A. Zolfigol, A. Khazaei, M. Mokhlesi, H. Vahedi, S. Sajadifar, and M. Pirveysian, “Heterogeneous and catalytic thiocyanation of aromatic compounds in aqueous media,” Phosphorus, Sulfur and Silicon and the Related Elements, vol. 187, no. 3, pp. 295–306, 2012. View at Google Scholar · View at Scopus
  42. A. Khazaei, M. A. Zolfigol, M. Mokhlesi, F. D. Panah, and S. Sajjadifar, “Simple and highly efficient catalytic thiocyanation of aromatic compounds in aqueous media,” Helvetica Chimica Acta, vol. 95, no. 1, pp. 106–114, 2012. View at Publisher · View at Google Scholar · View at Scopus