Table of Contents
Journal of Catalysts
Volume 2013, Article ID 730978, 9 pages
http://dx.doi.org/10.1155/2013/730978
Research Article

Methane Activation and Transformation on Polyoxometalates

Université de Lyon ICL, C2P2 UMR 5265 LCOMS (CNRS-CPE-Université Lyon 1), 43 Boulevard du 11 Novembre 1918, 69616 Villeurbanne, France

Received 9 November 2012; Accepted 19 December 2012

Academic Editor: Jianqin Zhuang

Copyright © 2013 Frédéric Lefebvre et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. H. Lunsford, “Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century,” Catalysis Today, vol. 63, no. 2–4, pp. 165–174, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. M. C. Alvarez-Galvan, N. Mota, M. Ojeda, S. Rojas, R. M. Navarro, and J. L. G. Fierro, “Direct methane conversion routes to chemicals and fuels,” Catalysis Today, vol. 171, no. 1, pp. 15–23, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. R. K. Grasselli, “Fundamental principles of selective heterogeneous oxidation catalysis,” Topics in Catalysis, vol. 21, no. 1–3, pp. 79–88, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Moro-Oka, “The role of acidic properties of metal oxide catalysts in the catalytic oxidation,” Applied Catalysis A, vol. 181, no. 2, pp. 323–329, 1999. View at Google Scholar
  5. M. V. Luzgin, A. A. Gabrienko, V. A. Rogov, A. V. Toktarev, V. N. Parmon, and A. G. Stepanov, “The “alkyl” and “carbenium” pathways of methane activation on Ga-modified zeolite BEA: C13 solid-state NMR and GC-MS study of methane aromatization in the presence of higher alkane,” Journal of Physical Chemistry C, vol. 114, no. 49, pp. 21555–21561, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. E. V. Starokon, M. V. Parfenov, L. V. Pirutko, S. I. Abornev, and G. I. Panov, “Room-temperature oxidation of methane by α-oxygen and extraction of products from the FeZSM-5 surface,” Journal of Physical Chemistry C, vol. 115, no. 5, pp. 2155–2161, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Kwapien, M. Sierka, J. Döbler, and J. Sauer, “Reactions of H2, CH4, C2H6, and C3H8 with [(MgO)n]+ clusters studied by density functional theory,” ChemCatChem, vol. 2, no. 7, pp. 819–826, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. R. A. Periana, D. J. Taube, E. R. Evitt et al., “A mercury-catalyzed, high-yield system for the oxidation of methane to methanol,” Science, vol. 259, no. 5093, pp. 340–343, 1993. View at Google Scholar · View at Scopus
  9. R. A. Periana, D. J. Taube, S. Gamble, H. Taube, T. Satoh, and H. Fujii, “Platinum catalysts for the high-yield oxidation of methane to a methanol derivative,” Science, vol. 280, no. 5363, pp. 560–564, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. C. J. Jones, D. Taube, V. R. Ziatdinov et al., “Selective oxidation of methane to methanol catalyzed, with C–H activation, by homogeneous, cationic gold,” Angewandte Chemie, vol. 43, no. 35, pp. 4626–4629, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. C. L. Hill, “Introduction:  polyoxometalates multicomponent molecular vehicles to probe fundamental issues and practical problems,” Chemical Reviews, vol. 98, pp. 1–390, 1998. View at Google Scholar
  12. G. I. Kapustin, T. R. Brueva, A. L. Klyachko, M. N. Timofeeva, S. M. Kulikov, and I. V. Kozhevnikov, “Study of the acidity of heteropolyacids,” Kinetics and Catalysis, vol. 31, no. 4, pp. 896–898, 1991. View at Google Scholar · View at Scopus
  13. F. Lefebvre, “31P MAS NMR study of H3PW12O40 supported on silica: formation of (SiOH2+)(H2PW12O40-),” Journal of the Chemical Society, Chemical Communications, no. 10, pp. 756–757, 1992. View at Publisher · View at Google Scholar
  14. E. Grinenval, X. Rozanska, A. Baudouin et al., “Controlled interactions between anhydrous keggin-type heteropolyacids and silica support: preparation and characterization of well-defined silica-supported polyoxometalate species,” Journal of Physical Chemistry C, vol. 114, no. 44, pp. 19024–19034, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Thomas, C. Dablemont, J. M. Basset, and F. Lefebvre, “Comparison of H3PW12O40 and H4SiW12O40 heteropolyacids supported on silica by 1H MAS NMR,” Comptes Rendus Chimie, vol. 8, no. 11-12, pp. 1969–1974, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Dufaud and F. Lefebvre, “Inorganic hybrid materials with encapsulated polyoxometalates,” Materials, vol. 3, pp. 682–703, 2010. View at Google Scholar
  17. V. Dufaud, F. Lefebvre, G. P. Niccolai, and M. Aouine, “New insights into the encapsulation and stabilization of heteropolyacids inside the pore walls of mesostructured silica materials,” Journal of Materials Chemistry, vol. 19, no. 8, pp. 1142–1150, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Okuhara, H. Watanabe, T. Nishimura, K. Inumaru, and M. Misono, “Microstructure of cesium hydrogen salts of 12-tungstophosphoric acid relevant to novel acid catalysis,” Chemistry of Materials, vol. 12, no. 8, pp. 2230–2238, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Kasztelan and J. B. Moffat, “The oxidation of methane on heteropolyoxometalates. I. Catalytic properties of silica-supported heteropolyacids,” Journal of Catalysis, vol. 106, no. 2, pp. 512–524, 1987. View at Google Scholar · View at Scopus
  20. S. Ahmed and J. B. Moffat, “Methane conversion on silica-supported 12-molybdophosphoric acid in the presence of dichloro- or tetrachloromethane,” Journal of Physical Chemistry, vol. 93, no. 6, pp. 2542–2548, 1989. View at Google Scholar · View at Scopus
  21. N. Mizuno, H. Ishige, Y. Seki et al., “Low-temperature oxygenation of methane into formic acid with molecular oxygen in the presence of hydrogen catalysed by Pd0.08Cs2.5H1.34PVMo11O40,” Chemical Communications, no. 14, pp. 1295–1296, 1997. View at Google Scholar · View at Scopus
  22. J. S. Min, H. Ishige, M. Misono, and N. Mizuno, “Low-temperature selective oxidation of methane into formic acid with H2–O2 gas mixture catalyzed by bifunctional catalyst of palladium-heteropoly compound,” Journal of Catalysis, vol. 198, no. 1, pp. 116–121, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Sugino, A. Kido, N. Azuma, A. Ueno, and Y. Udagawa, “Partial oxidation of methane on silica-supported silicomolybdic acid catalysts in an excess amount of water vapor,” Journal of Catalysis, vol. 190, no. 1, pp. 118–127, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Pei, B. Yue, L. Qian et al., “Preparation and characterization of P-Mo-V mixed oxide-incorporating mesoporous silica catalysts for selective oxidation of methane to formaldehyde,” Applied Catalysis A, vol. 329, pp. 148–155, 2007. View at Publisher · View at Google Scholar
  25. O. Benlounes, S. Mansouri, C. Rabia, and S. Hocine, “Direct oxidation of methane to oxygenates over heteropolyanions,” Journal of Natural Gas Chemistry, vol. 17, no. 3, pp. 309–312, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. N. D. Spencer and C. J. Pereira, “V2O5SiO2-catalyzed methane partial oxidation with molecular oxygen,” Journal of Catalysis, vol. 116, no. 2, pp. 399–406, 1989. View at Google Scholar
  27. N. Mizuno and K. Kamata, “Catalytic oxidation of hydrocarbons with hydrogen peroxide by vanadium-based polyoxometalates,” Coordination Chemistry Reviews, vol. 255, no. 19-20, pp. 2358–2370, 2011. View at Publisher · View at Google Scholar
  28. S. Berndt, D. Herein, F. Zemlin, E. Beckmann, G. Weinberg, and J. Schütze, “A new unifying structural model of heteropolymolybdate salts: microstructure and thermal stability of a series of molecular oxides,” Physical Chemistry Chemical Physics, vol. 102, no. 5, pp. 763–774, 1998. View at Google Scholar
  29. E. Grinenval, J. M. Basset, and F. Lefebvre, “Reactivity of anhydrous Keggin-type heteropolyacids with alkylsilanes: synthesis and characterization,” Inorganic Chemistry, vol. 49, no. 19, pp. 8749–8755, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Grinenval, J. M. Basset, and F. Lefebvre, “Reactivity of anhydrous Keggin-type molybdenum heteropolyacids with alkylsilanes: synthesis and characterization,” Inorganica Chimica Acta, vol. 370, no. 1, pp. 297–303, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Otake, Y. Komiyama, and T. Otaki, “Electron spin resonance studies of the reduced molybdovanadophosphoric heteropoly acids. I,” Journal of Physical Chemistry, vol. 77, no. 24, pp. 2896–2903, 1973. View at Google Scholar · View at Scopus
  32. C. De Graaf, R. Caballol, S. Romo, and J. M. Poblet, “Ab initio study of the singlet-triplet splitting in reduced polyoxometalates,” Theoretical Chemistry Accounts, vol. 123, no. 1-2, pp. 3–10, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. V. Bosáček, “Formation of surface-bonded methoxy groups in the sorption of methanol and methyl iodide on zeolites studied by 13C MAS NMR spectroscopy,” Journal of Physical Chemistry, vol. 97, no. 41, pp. 10732–10737, 1993. View at Google Scholar
  34. D. K. Murray, J. W. Chang, and J. F. Haw, “Conversion of methyl halides to hydrocarbons on basic zeolites: a discovery by in Situ NMR,” Journal of the American Chemical Society, vol. 115, no. 11, pp. 4732–4741, 1993. View at Google Scholar · View at Scopus
  35. W. Wang, M. Seiler, and M. Hunger, “Role of surface methoxy species in the conversion of methanol to dimethyl ether on acidic zeolites investigated by in situ stopped-flow MAS NMR spectroscopy,” Journal of Physical Chemistry B, vol. 105, no. 50, pp. 12553–12558, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Zhang, A. Zheng, H. Yu, S. Li, X. Lu, and F. Deng, “Formation, location, and photocatalytic reactivity of methoxy species on keggin 12-H3PW12O40: a joint solid-state NMR spectroscopy and DFT calculation study,” Journal of Physical Chemistry C, vol. 112, no. 40, pp. 15765–15770, 2008. View at Publisher · View at Google Scholar
  37. M. V. Luzgin, M. S. Kazantsev, W. Wang, and A. G. Stepanov, “Reactivity of methoxy species toward CO on keggin 12-H3PW12O40: a study with solid state NMR,” Journal of Physical Chemistry C, vol. 113, no. 45, pp. 19639–19644, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. W. H. Knoth and R. L. Harlow, “Derivatives of heteropolyanions. 3. O-alkylation of Mo12PO403- and W12PO403-,” Journal of the American Chemical Society, vol. 103, no. 14, pp. 4265–4266, 1981. View at Google Scholar · View at Scopus
  39. I. V. Kozhevnikov, A. Sinnema, and H. van Bekkum, “Proton sites in Keggin heteropoly acids from 17O NMR,” Catalysis Letters, vol. 34, no. 1-2, pp. 213–221, 1995. View at Publisher · View at Google Scholar · View at Scopus
  40. I. V. Kozhevnikov, A. Sinnema, H. Van Bekkum, and M. Fournier, “17O MASNMR study of 12-molybdophosphoric acid,” Catalysis Letters, vol. 41, no. 3-4, pp. 153–157, 1996. View at Google Scholar · View at Scopus
  41. M. S. Kazantsev, M. V. Luzgin, G. G. Volkova, and A. G. Stepanov, “Carbonylation of dimethyl ether on Rh/Cs2HP 12O40: solid-state NMR study of the mechanism of reaction in the presence of a methyl iodide promoter,” Journal of Catalysis, vol. 291, pp. 9–16, 2012. View at Publisher · View at Google Scholar
  42. M. V. Luzgin, M. S. Kazantsev, G. G. Volkova, W. Wang, and A. G. Stepanov, “Carbonylation of dimethyl ether on solid Rh-promoted Cs-salt of Keggin 12-H3PW12O40: a solid-state NMR study of the reaction mechanism,” Journal of Catalysis, vol. 277, no. 1, pp. 72–79, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Waters, R. A. J. O'Hair, and A. G. Wedd, “Catalytic gas phase oxidation of methanol to formaldehyde,” Journal of the American Chemical Society, vol. 125, no. 11, pp. 3384–3396, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Waters, R. A. J. O'Hair, and A. G. Wedd, “Probing the catalytic oxidation of alcohols via an anionic dimolybdate centre using multistage mass spectrometry,” Chemical Communications, no. 3, pp. 225–226, 2000. View at Google Scholar
  45. T. Sugino, A. Kido, N. Azuma, A. Ueno, and Y. Udagawa, “Partial oxidation of methane on silica-supported silicomolybdic acid catalysts in an excess amount of water vapor,” Journal of Catalysis, vol. 190, no. 1, pp. 118–127, 2000. View at Publisher · View at Google Scholar · View at Scopus