Table of Contents
Journal of Catalysts
Volume 2013, Article ID 940345, 8 pages
http://dx.doi.org/10.1155/2013/940345
Research Article

Synthesis of Novel ZnO Having Cauliflower Morphology for Photocatalytic Degradation Study

1Nano Technology Lab, Science College, Congress Nagar, Nagpur, Maharashtra 12, India
2Priyadarshini College of Engineering and Technology, Nagpur, Maharashtra 19, India

Received 28 September 2012; Revised 26 March 2013; Accepted 2 April 2013

Academic Editor: Jianqin Zhuang

Copyright © 2013 Dipak Nipane et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Han, V. S. R. Kambala, M. Srinivasan, D. Rajarathnam, and R. Naidu, “Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review,” Applied Catalysis A, vol. 359, no. 1-2, pp. 25–40, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. L. Y. Yang, S. Y. Dong, J. H. Sun, J. L. Feng, Q. H. Wu, and S. P. Sun, “Microwave-assisted preparation, characterization and photocatalytic properties of a dumbbell-shaped ZnO photocatalyst,” Journal of Hazardous Materials, vol. 179, no. 1–3, pp. 438–443, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. G. C. Yi, C. Wang, and W. I. Park, “ZnO nanorods: synthesis,characterization and applications,” Semiconductor Science and Technology, vol. 20, pp. S22–S34, 2005. View at Google Scholar
  4. F. Lu, W. Cai, and Y. Zhang, “ZnO hierarchical micro/nanoarchitectures: solvothermal synthesis and structurally enhanced photocatalytic performance,” Advanced Functional Materials, vol. 18, no. 7, pp. 1047–1056, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Qu, C. Luo, and Q. Cong, “Synthesis of multi-walled carbon nanotubes/ZnO nanocomposites using absorbent cotton,” Nano-Micro Letters, vol. 3, pp. 115–120, 2011. View at Google Scholar
  6. S. Chu, G. Wang, W. Zhou et al., “Electrically pumped waveguide lasing from ZnO nanowires,” Nature Nanotechnology, vol. 6, no. 8, pp. 506–510, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. J. H. Na, M. Kitamura, M. Arita, and Y. Arakawa, “Hybrid p-n junction light-emitting diodes based on sputtered ZnO and organic semiconductors,” Applied Physics Letters, vol. 95, no. 25, Article ID 253303, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Sudhagar, R. S. Kumar, J. H. Jung et al., “Facile synthesis of highly branched jacks-like ZnO nanorods and their applications in dye-sensitized solar cells,” Materials Research Bulletin, vol. 46, no. 9, pp. 1473–1479, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. Z. L. Wang, R. Yang, J. Zhou et al., “Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics,” Materials Science and Engineering R, vol. 70, no. 3–6, pp. 320–329, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Xu, J. Han, Y. Zhang, Y. Sun, and B. Xie, “Studies on alcohol sensing mechanism of ZnO based gas sensors,” Sensors and Actuators B, vol. 132, no. 1, pp. 334–339, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Y. Lu, S. J. Chang, S. P. Chang et al., “Ultraviolet photodetectors with ZnO nanowires prepared on ZnO:Ga/glass templates,” Applied Physics Letters, vol. 89, no. 15, Article ID 153101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Cho, S. Kim, J. W. Jang et al., “Large-scale fabrication of sub-20-nm-diameter ZnO nanorod arrays at room temperature and their photocatalytic activity,” Journal of Physical Chemistry C, vol. 113, no. 24, pp. 10452–10458, 2009. View at Google Scholar
  13. S. S. Srinivasan, J. Wade, E. K. Stefanakos, and Y. Goswami, “Synergistic effects of sulfation and co-doping on the visible light photocatalysis of TiO2,” Journal of Alloys and Compounds, vol. 424, no. 1-2, pp. 322–326, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, “P25-graphene composite as a high performance photocatalyst,” ACS Nano, vol. 4, no. 1, pp. 380–386, 2010. View at Google Scholar
  15. D. Y. Goswami, “Decontamination of ventilation systems using photocatalytic air cleaning technology,” Journal of Solar Energy Engineering, Transactions of the ASME, vol. 125, no. 3, pp. 359–365, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Sapkota, A. J. Anceno, S. Baruah, O. V. Shipin, and J. Dutta, “Zinc oxide nanorod mediated visible light photoinactivation of model microbes in water,” Nanotechnology, vol. 22, no. 21, Article ID 215703, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Ladanov, M. K. Ram, G. Matthews, and A. Kumar, “Structure and opto-electrochemical properties of ZnO nanowires grown on n-Si substrate,” Langmuir, vol. 27, no. 14, pp. 9012–9017, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. D. M. Fouad and M. B. Mohamed, “Comparative study of the photocatalytic activity of semiconductor nanostructures and their hybrid metal nanocomposites on the photodegradation of malathion,” Journal of Nanomaterials, vol. 2012, Article ID 524123, 8 pages, 2012. View at Publisher · View at Google Scholar
  19. A. A. Khodja, T. Sehili, J. F. Pilichowski, and P. Boule, “Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions,” Journal of Photochemistry and Photobiology A, vol. 141, no. 2-3, pp. 231–239, 2001. View at Google Scholar · View at Scopus
  20. G. Marcì, V. Augugliaro, M. J. López-Muñoz et al., “Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems. 2. Surface, bulk characterization, and 4-nitrophenol photodegradation in liquid-solid regime,” Journal of Physical Chemistry B, vol. 105, no. 5, pp. 1033–1040, 2001. View at Google Scholar · View at Scopus
  21. N. Sobana and M. Swaminathan, “The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO,” Separation and Purification Technology, vol. 56, no. 1, pp. 101–107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. Q. Wan, T. H. Wang, and J. C. Zhao, “Enhanced photocatalytic activity of ZnO nanotetrapods,” Applied Physics Letters, vol. 87, no. 8, pp. 1–3, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. N. V. Kaneva, D. T. Dimitrov, and C. D. Dushkin, “Effect of nickel doping on the photocatalytic activity of ZnO thin films under UV and visible light,” Applied Surface Science, vol. 257, no. 18, pp. 8113–8120, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Sakthivel, B. Neppolian, M. V. Shankar, B. Arabindoo, M. Palanichamy, and V. Murugesan, “Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2,” Solar Energy Materials and Solar Cells, vol. 77, no. 1, pp. 65–82, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Ahmed, M. G. Rasul, W. N. Martens, R. Brown, and M. A. Hashib, “Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments,” Desalination, vol. 261, no. 1-2, pp. 3–18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Ghayour, H. R. Rezaie, S. Mirdamadi, and A. A. Nourbakhsh, “The effect of seed layer thickness on alignment and morphology of ZnO nanorods,” Vacuum, vol. 86, no. 1, pp. 101–105, 2011. View at Google Scholar
  27. W. Y. Wu, C. C. Yeh, and J. M. Ting, “Effects of seed layer characteristics on the synthesis of ZnO nanowires,” Journal of the American Ceramic Society, vol. 92, no. 11, pp. 2718–2723, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. N. V. Suramwar, S. R. Thakare, N. N. Karade, and N. T. Khati, “Green synthesis of predominant (111) facet CuO nanoparticles: heterogeneousand recyclable catalyst for N-arylation of indoles,” Journal of Molecular Catalysis A, vol. 359, pp. 28–34, 2012. View at Google Scholar
  29. G. Kenanakis, D. Vernardou, E. Koudoumas, and N. Katsarakis, “Growth of c-axis oriented ZnO nanowires from aqueous solution: the decisive role of a seed layer for controlling the wires' diameter,” Journal of Crystal Growth, vol. 311, no. 23-24, pp. 4799–4804, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Sugunan, V. K. Guduru, A. Uheida, M. S. Toprak, and M. Muhammed, “Radially oriented ZnO nanowires on flexible poly-L-lactide nanofibers for continuous-flow photocatalytic water purification,” Journal of the American Ceramic Society, vol. 93, no. 11, pp. 3740–3744, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Kenanakis and N. Katsarakis, “Light-induced photocatalytic degradation of stearic acid by c-axis oriented ZnO nanowires,” Applied Catalysis A, vol. 378, no. 2, pp. 227–233, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Zhang, J. Xu, P. Xu, Y. Zhu, X. Chen, and W. Yu, “Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance,” Nanotechnology, vol. 21, no. 28, Article ID 285501, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Ma, Z. Zhou, H. Wei, Z. Yang, Z. Wang, and Y. Zhang, “Rapid large-scale preparation of ZnO nanowires for photocatalytic application,” Nanoscale Research Letters, vol. 6, no. 1, article 536, 2011. View at Google Scholar
  34. S. Baruah, M. Abbas, M. Myint, T. Bora, and J. Dutta, “Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods,” Beilstein Journal of Nanotechnology, vol. 1, pp. 14–20, 2010. View at Google Scholar