Table of Contents
Journal of Catalysts
Volume 2013, Article ID 942145, 7 pages
http://dx.doi.org/10.1155/2013/942145
Research Article

Novel Ni-Co-Mo-K Catalysts Supported on Multiwalled Carbon Nanotubes for Higher Alcohols Synthesis

1Faculty of Science & Engineering, York University, 4700 Keele Street, Toronto, ON, Canada M3J 1P3
2Catalysis and Chemical Reaction Engineering Laboratories, Department of Chemical Engineering, University of Saskatchewan, Saskatoon, SK, Canada S7N 5A9

Received 25 December 2012; Revised 19 February 2013; Accepted 19 February 2013

Academic Editor: Valeria La Parola

Copyright © 2013 Venkateswara Rao Surisetty et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Mahdavia, M. H. Peyrovia, M. Islamib, and J. Yegane Mehrb, “Synthesis of higher alcohols from syngas over Cu–Co2O3/ZnO, Al2O3 catalyst,” Applied Catalysis A, vol. 281, no. 1-2, pp. 259–265, 2005. View at Publisher · View at Google Scholar
  2. V. R. Surisetty, J. Kozinski, and A. K. Dalai, “Alcohols as alternative fuels: an overview,” Applied Catalysis A, vol. 404, no. 1-2, pp. 1–11, 2011. View at Publisher · View at Google Scholar
  3. P. Forzatti, E. Tronconi, and I. Pasquon, “Higher alcohol synthesis,” Catalysis Reviews, vol. 33, no. 1-2, pp. 109–168, 1991. View at Google Scholar · View at Scopus
  4. J. M. Campos-Martín, J. L. G. Fierro, A. Guerrero-Ruiz, R. G. Herman, and K. Klier, “Promoter effect of cesium on C–C bond formation during alcohol synthesis from CO/H2 over Cu/ZnO/Cr2O3 catalysts,” Journal of Catalysis, vol. 163, no. 2, pp. 418–428, 1996. View at Google Scholar · View at Scopus
  5. R. Xu, C. Yang, W. Wei, W. H. Li, Y. H. Sun, and T. D. Hu, “Fe-modified CuMnZrO2 catalysts for higher alcohols synthesis from syngas,” Journal of Molecular Catalysis A, vol. 221, no. 1-2, pp. 51–58, 2004. View at Publisher · View at Google Scholar
  6. X. Xiaoding, E. B. M. Doesburg, and J. J. F. Scholten, “Synthesis of higher alcohols from syngas—recently patented catalysts and tentative ideas on the mechanism,” Catalysis Today, vol. 2, no. 1, pp. 125–170, 1987. View at Google Scholar · View at Scopus
  7. H. C. Woo and K. Y. Park, “Mixed alcohol synthesis from carbon monoxide and dihydrogen over potassium-promoted molybdenum carbide catalysts,” Applied Catalysis, vol. 75, no. 1, pp. 267–280, 1991. View at Publisher · View at Google Scholar
  8. V. R. Surisetty, A. Tavasoli, and A. K. Dalai, “Synthesis of higher alcohols from syngas over alkali promoted MoS2 catalysts supported on multi-walled carbon nanotubes,” Applied Catalysis A, vol. 365, no. 2, pp. 243–251, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. C. B. Murchison, M. M. Conway, R. R. Stevens, and G. J. Qurarderer, “Process for producing olefins from carbon monoxide and hydrogen,” in in Proceedings of the 9th International Congress on Catalysis, vol. 2, p. 561, 1988.
  10. J. Iranmahboob, D. O. Hill, and H. Toghiani, “K2CO3/Co-MoS2/clay catalyst for synthesis of alcohol: influence of potassium and cobalt,” Applied Catalysis A, vol. 231, no. 1-2, pp. 99–108, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Fujumoto and T. Oba, “Synthesis of C1–C7 alcohols from synthesis gas with supported cobalt catalysts,” Applied Catalysis, vol. 13, pp. 289–319, 1985. View at Publisher · View at Google Scholar
  12. V. R. Surisetty, Y. Hu, A. K. Dalai, and J. Kozinski, “Structural characterization and catalytic performance of alkali (K) and metal (Co and Rh)-promoted MoS2 catalysts for higher alcohols synthesis,” Applied Catalysis A, vol. 392, no. 1-2, pp. 166–172, 2011. View at Publisher · View at Google Scholar
  13. V. R. Surisetty, A. K. Dalai, and J. Kozinski, “Synthesis of higher alcohols from synthesis gas over Co-promoted alkali-modified MoS2 catalysts supported on MWCNTs,” Applied Catalysis A, vol. 385, no. 1-2, pp. 153–162, 2010. View at Publisher · View at Google Scholar
  14. D. B. Li, C. Yang, H. J. Qi, W. H. Li, Y. H. Sun, and B. Zhong, “Higher alcohol synthesis over a La promoted Ni/K2CO3/MoS2 catalyst,” Catalysis Communications, vol. 5, no. 10, pp. 605–609, 2004. View at Publisher · View at Google Scholar
  15. S. A. Hedrick, S. S. C. Chuang, A. Pant, and A. G. Dastidar, “Activity and selectivity of Group VIII, alkali-promoted Mn–Ni, and Mo-based catalysts for C2+ oxygenate synthesis from the CO hydrogenation and CO/H2/C2H4 reactions,” Catalysis Today, vol. 55, no. 3, pp. 247–257, 2000. View at Google Scholar · View at Scopus
  16. S. S. C. Chuang and S. I. Pien, “Infrared studies of reaction of ethylene with syngas on Ni/SiO2,” Catalysis Letters, vol. 3, no. 4, pp. 323–329, 1989. View at Publisher · View at Google Scholar · View at Scopus
  17. M. A. Haider, M. R. Gogate, and R. J. Davis, “Fe-promotion of supported Rh catalysts for direct conversion of syngas to ethanol,” Journal of Catalysis, vol. 261, no. 1, pp. 9–16, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. V. R. Surisetty, A. K. Dalai, and J. Kozinski, “Effect of Rh promoter on MWCNT-supported alkali-modified MoS2 catalysts for higher alcohols synthesis from CO hydrogenation,” Applied Catalysis A, vol. 381, no. 1-2, pp. 282–288, 2010. View at Publisher · View at Google Scholar
  19. V. R. Surisetty, A. K. Dalai, and J. Kozinski, “Alkali-promoted trimetallic Co–Rh–Mo sulfide catalysts for higher alcohols synthesis from synthesis gas: comparison of MWCNT and activated carbon supports,” Industrial & Engineering Chemistry Research, vol. 49, pp. 6845–6853, 2010. View at Publisher · View at Google Scholar
  20. P. J. Van Berge, J. Van De Loosdrecht, S. Barradas, and A. M. Van Der Kraan, “Oxidation of cobalt based Fischer-Tropsch catalysts as a deactivation mechanism,” Catalysis Today, vol. 58, no. 4, pp. 321–334, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Serp, M. Corrias, and P. Kalck, “Carbon nanotubes and nanofibers in catalysis,” Applied Catalysis A, vol. 253, no. 2, pp. 337–358, 2003. View at Publisher · View at Google Scholar
  22. M. Xiaoming, L. Guodong, and Z. Hongbin, “Co–Mo–K sulfide-based catalyst promoted by multiwalled carbon nanotubes for higher alcohol synthesis from syngas,” Chinese Journal of Catalysis, vol. 27, no. 11, pp. 1019–1027, 2006. View at Publisher · View at Google Scholar
  23. V. R. Surisetty, A. K. Dalai, and J. Kozinski, “Influence of porous characteristics of the carbon support on alkali-modified trimetallic Co–Rh–Mo sulfided catalysts for higher alcohols synthesis from synthesis gas,” Applied Catalysis A, vol. 393, pp. 50–58, 2011. View at Publisher · View at Google Scholar
  24. V. R. Surisetty, A. K. Dalai, and J. Kozinski, “Deactivation studies of alkali-promoted trimetallic Co–Rh–Mo sulfide catalysts for higher alcohols synthesis from synthesis gas,” Energy & Fuels, vol. 25, pp. 580–590, 2011. View at Publisher · View at Google Scholar
  25. V. R. Surisetty, A. K. Dalai, and J. Kozinski, “Intrinsic reaction kinetics of higher alcohol synthesis from synthesis gas over a sulfided alkali-promoted Co–Rh–Mo trimetallic catalyst supported on multiwalled carbon nanotubes (MWCNTs),” Energy & Fuels, vol. 24, pp. 4130–44137, 2011. View at Publisher · View at Google Scholar
  26. V. R. Surisetty, A. K. Dalai, and J. Kozinski, “Effect of operating conditions for higher alcohols synthesis from synthesis gas over alkali-modified Co-Rh-Mo trimetallic catalyst supported on multi-walled carbon nanotubes,” International Journal of Chemical Reactor Engineering, vol. 9, no. 1, 2011. View at Publisher · View at Google Scholar
  27. M. C. Bahome, L. L. Jewell, D. Hildebrandt, D. Glasser, and N. J. Coville, “Fischer–Tropsch synthesis over iron catalysts supported on carbon nanotubes,” Applied Catalysis A, vol. 287, pp. 60–67, 2005. View at Publisher · View at Google Scholar
  28. Z. R. Li, Y. L. Fu, M. Jiang, T. D. Hu, T. Liu, and Y. N. Xie, “Active carbon supported Mo–K catalysts used for alcohol synthesis,” Journal of Catalysis, vol. 199, no. 2, pp. 155–161, 2001. View at Publisher · View at Google Scholar
  29. Z. Li, Y. Fu, J. Bao et al., “Effect of cobalt promoter on Co–Mo–K/C catalysts used for mixed alcohol synthesis,” Applied Catalysis A, vol. 220, pp. 21–230, 2001. View at Publisher · View at Google Scholar
  30. H. Qi, D. Li, C. Yang et al., “Nickel and manganese co-modified K/MoS2 catalyst: high performance for higher alcohols synthesis from CO hydrogenation,” Catalysis Communications, vol. 4, no. 7, pp. 339–3342, 2003. View at Publisher · View at Google Scholar
  31. J. G. Santiesteban, Alcohol synthesis from carbon-monoxide and hydrogen over MoS2-based catalyst [Ph.D. thesis], Lehigh University, Bethlehem, Pa, USA, 1989.
  32. Z. R. Li, Y. L. Fu, and M. Jiang, “Structures and performance of Rh–Mo–K/Al2O3 catalysts used for mixed alcohol synthesis from synthesis gas,” Applied Catalysis A, vol. 187, no. 2, pp. 187–198, 1999. View at Publisher · View at Google Scholar