Table of Contents
Journal of Catalysts
Volume 2014, Article ID 612575, 6 pages
http://dx.doi.org/10.1155/2014/612575
Research Article

Hydrogen Production from the Water-Gas Shift Reaction on Iron Oxide Catalysts

1Département de Génie de l’Environnement, Ecole Nationale Polytechnique, 10 Avenue H. Badi, BP 182, El Harrach, 16200 Alger, Algeria
2Institut de Recherches sur la Catalyse et l’Environnement de Lyon, UMR 5256, CNRS-UCB Lyon1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France

Received 11 July 2014; Revised 8 September 2014; Accepted 8 September 2014; Published 25 September 2014

Academic Editor: Hicham Idriss

Copyright © 2014 R. Bouarab et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. G. Rethwisch and J. A. Dumesic, “The effects of metal-oxygen bond strength on properties of oxides: II. Water-gas shift over bulk oxides,” Applied Catalysis, vol. 21, no. 1, pp. 97–109, 1986. View at Publisher · View at Google Scholar · View at Scopus
  2. D. C. Grenoble, M. M. Estadt, and D. F. Ollis, “The chemistry and catalysis of the water gas shift reaction. 1. The kinetics over supported metal catalysts,” Journal of Catalysis, vol. 67, no. 1, pp. 90–102, 1981. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Boudjemaa, A. Auroux, S. Boumaza, M. Trari, O. Cherifi, and R. Bouarab, “Hydrogen production on iron-magnesium oxide in the high-temperature water-gas shift reaction,” Reaction Kinetics and Catalysis Letters, vol. 98, no. 2, pp. 319–325, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. N. E. Amadeo and M. A. Laborde, “Hydrogen production from the low-temperature water-gas shift reaction: Kinetics and simulation of the industrial reactor,” International Journal of Hydrogen Energy, vol. 20, no. 12, pp. 949–956, 1995. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Aeijelts Averink Silberova, G. Mul, M. Makkee, and J. A. Moulijn, “DRIFTS study of the water-gas shift reaction over Au/Fe2O3,” Journal of Catalysis, vol. 243, no. 1, pp. 171–182, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. Q. Fu, W. Deng, H. Saltsburg, and M. Flytzani-Stephanopoulos, “Activity and stability of low-content gold-cerium oxide catalysts for the water-gas shift reaction,” Applied Catalysis B: Environmental, vol. 56, no. 1-2, pp. 57–68, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Basinska, L. Kepenski, and F. Donka, “The effect of support on WGSR activity of ruthenium catalysts,” Applied Catalysis A: General, vol. 183, pp. 143–153, 1999. View at Publisher · View at Google Scholar
  8. A. M. Duarte de Farias, A. P. M. G. Barandas, R. F. Perez, and M. A. Fraga, “Water-gas shift reaction over magnesia-modified Pt/CeO2 catalysts,” Journal of Power Sources, vol. 165, no. 2, pp. 854–860, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Chenu, G. Jacobs, A. C. Crawford et al., “Water-gas shift: An examination of Pt promoted MgO and tetragonal and monoclinic ZrO2 by in situ drifts,” Applied Catalysis B: Environmental, vol. 59, no. 1-2, pp. 45–56, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. I. L. Júnior, J.-M. M. Millet, M. Aouine, and M. do Carmo Rangel, “The role of vanadium on the properties of iron based catalysts for the water gas shift reaction,” Applied Catalysis A: General, vol. 283, no. 1-2, pp. 91–98, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Martos, J. Dufour, and A. Ruiz, “Synthesis of Fe3O4-based catalysts for the high-temperature water gas shift reaction,” International Journal of Hydrogen Energy, vol. 34, no. 10, pp. 4475–4481, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Boudjemaa, C. Daniel, C. Mirodatos, M. Trari, A. Auroux, and R. Bouarab, “In situ DRIFTS studies of high-temperature water-gas shift reaction on chromium-free iron oxide catalysts,” Comptes Rendus Chimie, vol. 14, no. 6, pp. 534–538, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Rhodes, G. J. Hutchings, and A. M. Ward, “Water-gas shift reaction: finding the mechanistic boundary,” Catalysis Today, vol. 23, no. 1, pp. 43–58, 1995. View at Publisher · View at Google Scholar · View at Scopus
  14. G. C. Chinchen, R. H. Logan, and M. S. Spencer, “Water-gas shift reaction over an iron oxide/chromium oxide catalyst. II: stability of activity,” Applied Catalysis, vol. 12, no. 1, pp. 89–96, 1984. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Bouarab, A. Boudjemaa, M. Trari, S. Bennici, and A. Auroux, “Influence du support sur la structure cristalline, les propriétés acido-basiques et l'activité des systèmes à base de fer en réaction CO + H2O,” Comptes Rendus Chimie, vol. 12, no. 3-4, pp. 527–532, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. W. M. Shaheen, A. A. Zahran, and G. A. El-Shobaky, “Surface and catalytic properties of NiO/MgO system doped with Fe2O3,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 231, no. 1-3, pp. 51–65, 2003. View at Publisher · View at Google Scholar · View at Scopus