Table of Contents
Journal of Construction Engineering
Volume 2013, Article ID 293809, 10 pages
Research Article

Improvement of Bearing Capacity of Shallow Foundation on Geogrid Reinforced Silty Clay and Sand

Department of Civil and Environmental Engineering, Southern Illinois University Carbondale, 1230 Lincoln Drive, MC 6603, Carbondale, IL 62901, USA

Received 6 December 2012; Revised 12 May 2013; Accepted 26 May 2013

Academic Editor: Mohammed Sonebi

Copyright © 2013 P. K. Kolay et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The present study investigates the improvement in the bearing capacity of silty clay soil with thin sand layer on top and placing geogrids at different depths. Model tests were performed for a rectangular footing resting on top of the soil to establish the load versus settlement curves of unreinforced and reinforced soil system. The test results focus on the improvement in bearing capacity of silty clay and sand on unreinforced and reinforced soil system in non-dimensional form, that is, BCR. The results show that bearing capacity increases significantly with the increased number of geogrid layers. The bearing capacity for the soil increases with an average of 16.67% using one geogrid layer at interface of soils with equal to 0.667 and the bearing capacity increases with an average of 33.33% while using one geogrid in middle of sand layer with equal to 0.33. The improvement in bearing capacity for sand underlain silty clay maintaining and equal to 0.33; for two, three and four number geogrid layer were 44.44%, 61.11%, 72.22%, respectively. The finding of this research work may be useful to improve the bearing capacity of soil for shallow foundation and pavement design for similar type of soil available elsewhere.