Table of Contents Author Guidelines Submit a Manuscript
Journal of Construction Engineering
Volume 2013 (2013), Article ID 834572, 11 pages
http://dx.doi.org/10.1155/2013/834572
Review Article

Review of Nondestructive Testing Methods for Condition Monitoring of Concrete Structures

1Civil Engineering Department, University Institute of Technology, Rajiv Gandhi Technological University, Airport Road, Bhopal, Madhya Pradesh 462036, India
2G.S. Institute of Technology and Science, Indore, Madhya Pradesh 452003, India

Received 25 January 2013; Accepted 13 March 2013

Academic Editor: Anaclet Turatsinze

Copyright © 2013 Sanjeev Kumar Verma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. L. Rens, T. J. Wipf, and F. W. Klaiber, “Review of nondestructive evaluation techniques of civil infrastructure,” Journal of Performance of Constructed Facilities, vol. 11, no. 4, pp. 152–160, 1997. View at Google Scholar · View at Scopus
  2. M. K. Lim and H. Cao, “Combining multiple NDT methods to improve testing effectiveness,” Construction and Building Materials, vol. 38, pp. 1310–1315, 2013. View at Google Scholar
  3. P. Shaw and A. Xu, “Assessment of the deterioration of concrete in NPP- causes, effects and investigation methods,” NDT.Net, vol. 3, no. 2, 1998. View at Google Scholar
  4. D. M. McCann and M. C. Forde, “Review of NDT methods in the assessment of concrete and masonry structures,” NDT and E International, vol. 34, no. 2, pp. 71–84, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Breysse, G. Klysz, X. Dérobert, C. Sirieix, and J. F. Lataste, “How to combine several non-destructive techniques for a better assessment of concrete structures,” Cement and Concrete Research, vol. 38, no. 6, pp. 783–793, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Sanayei, J. E. Phelps, J. D. Sipple, E. S. Bell, and B. R. Brenner, “Instrumentation, non destructive testing, and finite element model updating for bridge evaluation using strain measurements,” Journal of Bridge Engineering, vol. 17, no. 1, pp. 130–138, 2012. View at Google Scholar
  7. B. Amini and S. S. Tehrani, “Combined effects of saltwater and water flow on deterioration of concrete under freeze-thaw cycles,” Journal of Cold Regions Engineering, vol. 25, no. 4, pp. 146–161, 2011. View at Google Scholar
  8. A. Loizos and V. Papavasiliou, “Evaluation of foamed asphalt cold in-place pavement recycling using nondestructive techniques,” Journal of Transportation Engineering, vol. 132, no. 12, pp. 970–978, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Proverbio and V. Venturi, “Reliability of nondestructive tests for on site concrete strength assessment,” 10DBMC, Lyon, France, 2005.
  10. K. L. Rens, C. L. Nogueira, and D. J. Transue, “Bridge management and nondestructive evaluation,” Journal of Performance of Constructed Facilities, vol. 19, no. 1, pp. 3–16, 2005. View at Google Scholar
  11. L. J. Malavar, N. R. Joshi, and T. Novinson, “Enviromental effects on the short term bond of carbon fibre reinforced (CRPF) composites,” Journal of Composites for Construction, vol. 7, no. 1, pp. 58–63, 2003. View at Google Scholar
  12. G. Pascale, A. D. Leo, and V. Bonora, “Nondestructive assessment of the actual compressive strength of high-strength concrete,” Journal of Materials in Civil Engineering, vol. 15, no. 5, pp. 452–459, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. P. F. Almir and F. C. Protasio, “Application of NDT to concrete strength estimation,” NDT.Net, vol. 5, no. 2, pp. 1–6, 2000. View at Google Scholar
  14. B. Chen, M. H. Maher, and E. G. Nawy, “Fibre optic bragg grating sensor for nondestructive evaluation of composite beams,” Journal of Structural Engineering, vol. 120, no. 12, pp. 3456–3469, 1995. View at Google Scholar
  15. K. L. Rens and T. Kim, “Inspection of Quebec street bridge in Denver, Colardo: destructive and nondestru testing,” Journal of Performance of Constructed Facilities, vol. 21, no. 3, pp. 215–224, 2007. View at Google Scholar
  16. S. S. Bhadauria and D. M. C. Gupta, “In situ performance testing of deteriorating water tanks for durability assessment,” Journal of Performance of Constructed Facilities, vol. 21, no. 3, pp. 234–239, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Amleh and M. S. Mirza, “Corrosion response of a decommissioned deteriorated bridge deck,” Journal of Performance of Constructed Facilities, vol. 18, no. 4, pp. 185–194, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. W. P. S. Dias and A. D. C. Jayanandana, “Condition assessment of a deteriorated cement works,” Journal of Performance of Constructed Facilities, vol. 17, no. 4, pp. 188–195, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Bruhwiler and P. Mivelaz, “From corrosion of existing to durability of new concrete structures,” in Proceedings of the International Association for Bridge and Structural Engineering Symposium (IABSE '99), Rio de Janeiro, Brazil, August 1999.
  20. A. S. M. Kamal and M. Boulfiza, “Durability of GFRP Rebars in simulated concrete solutions under accelerated aging conditions,” Journal of Composites for Construction, vol. 15, no. 4, pp. 473–481, 2011. View at Google Scholar
  21. T. Shiotani, D. G. Aggelis, and O. Makishima, “Global monitoring of large concrete structures using acoustic emission and ultrasonic techniques: case study,” Journal of Bridge Engineering, vol. 14, no. 3, pp. 188–192, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Cascante, H. Najjaran, and P. Crespi, “Novel methodology for nondestructive evaluation of brick walls: fuzzy logic analysis of MASW tests,” Journal of Infrastructure Systems, vol. 14, no. 2, pp. 117–128, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Zhu and J. S. Popovics, “Imaging concrete structures using air-coupled impact-echo,” Journal of Engineering Mechanics, vol. 133, no. 6, pp. 628–640, 2007. View at Google Scholar
  24. V. Nachiappan and E. H. Cho, “Corrosion of high chromium and conventional steels embedded in concrete,” Journal of Performance of Constructed Facilities, vol. 19, no. 1, pp. 56–61, 2005. View at Google Scholar
  25. A. Gibson and J. S. Popovics, “Lamb wave basis for impact echo method analysis,” Ournal of Engineering Mechanics, vol. 131, no. 4, pp. 438–443, 2005. View at Google Scholar
  26. B. Akuthota, D. Hughes, R. Zoughi, J. Myers, and A. Nanni, “Near-field microwave detection of disbond in carbon fiber reinforced polymer composites used for strengthening cement-based structures and disbond repair verification,” Journal of Materials in Civil Engineering, vol. 16, no. 6, pp. 540–546, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. S. L. Gassman and W. F. Tawhed, “Nondestructive assessment of damage in concrete bridge decks,” Journal of Performance of Constructed Facilities, vol. 18, no. 4, pp. 220–231, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. P. O. Paulson and M. D Wit, “The use of acoustic monitoring to manage concrete structures,” in Proceedings of the International Non-Destructive Testing in Civil Engineering Symposium (NDT-CE '03), 2003.
  29. C. U. Grosse, H. W. Reinhardt, and F. Finck, “Signal-based acoustic emission techniques in civil engineering,” Journal of Materials in Civil Engineering, vol. 15, no. 3, pp. 274–279, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. J. S. Popovics, W. Song, J. D. Achenbach, J. H. Lee, and R. F. Andre, “One-sided stress wave velocity measurement in concrete,” Journal of Engineering Mechanics, vol. 124, no. 12, pp. 1346–1353, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Nagy, “Determination of E-modulus of young concrete with nondestructive method,” Journal of Materials in Civil Engineering, vol. 9, no. 1, pp. 15–20, 1997. View at Google Scholar
  32. D. H. Chen and A. Wimsatt, “Inspection and condition assessment using ground penetrating radar,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 136, no. 1, pp. 207–213, 2010. View at Google Scholar
  33. S. Yehia, O. Abudayyeh, S. Nabulsi, and I. Abdelqader, “Detection of common defects in concrete bridge decks using nondestructive evaluation techniques,” Journal of Bridge Engineering, vol. 12, no. 2, pp. 215–224, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Maierhofer, “Nondestructive evaluation of concrete infrastructure with ground penetrating radar,” Journal of Materials in Civil Engineering, vol. 15, no. 3, pp. 287–297, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. K. R. Maser, “Condition assessment of transportation infrastructure using ground-penetrating radar,” Journal of Infrastructure Systems, vol. 2, no. 2, pp. 94–101, 1996. View at Google Scholar · View at Scopus
  36. S. Sharma and A. Mukherje, “Monitoring corrosion in oxide and chloride envroments using ultrasonic guided waves,” Journal of Materials in Civil Engineering, vol. 23, no. 2, pp. 207–211, 2011. View at Google Scholar
  37. A. M. Terzic and L. M. Pavlovic, “Application of results of non destructive testing methods in the investigation of microstructure of refractory voncretes,” Journal of Materials in Civil Engineering, vol. 22, no. 9, pp. 853–857, 2010. View at Google Scholar
  38. A. A. Shah and S. Hirose, “Nonlinear ultrasonic investigation of concrete damaged under uniaxial compression step loading,” Journal of Materials in Civil Engineering, vol. 22, no. 5, Article ID 007005QMT, pp. 476–483, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. B. L. Ervin, D. A. Kuchama, J. T. Bernhard, and H. Reis, “Monitoring corrosion of rebar embedded in mortar using high frequency guided ultrasonic waves,” Journal of Engineering Mechanics, vol. 135, no. 1, pp. 9–18, 2009. View at Google Scholar
  40. C. Stergiopoulou, M. S. Aggour, and R. H. McCuen, “Nondestructive testing and evaluation of concrete parking garages,” Journal of Infrastructure Systems, vol. 14, no. 4, pp. 319–326, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Yoshida and H. Irie, “NDT for concrete using the ultrasonic method,” in Proceedings of the 12th Asia Pacific Conference of Non Destructive Testing (A-PCNDT '06), Auckland, New Zealand, November 2006.
  42. U. Dilek, “Nondestructive and laboratory evaluation of damage gradients in concrete structure exposed to cryogenic temperatures,” Journal of Performance of Constructed Facilities, vol. 20, no. 1, pp. 37–44, 2006. View at Google Scholar
  43. S. A. Abo-Quadais, “Effect of concrete mixing parameters on propogation of ultrasonic waves,” Construction and Building Materials, vol. 19, no. 4, pp. 257–263, 2005. View at Google Scholar
  44. H. K. . Lee, K. M. Lee, Y. H. Kim, and D. B. Bae, “Ultrasonic in-situ monitoring of setting process of high performance concrete,” Cement and Concrete Research, vol. 34, no. 4, pp. 631–640, 2004. View at Google Scholar
  45. S. P. Shah, J. S. Popovics, K. V. Subramaniam, and C. M. Aldea, “New directions in concrete health monitoring technology,” Journal of Engineering Mechanics, vol. 126, no. 7, pp. 754–760, 2000. View at Google Scholar · View at Scopus
  46. A. G. Davis, J. G. Evans, and B. H. Hertlein, “Nondestructive evaluation of concrete radioactive waste tanks,” Journal of Performance of Constructed Facilities, vol. 11, no. 4, pp. 161–167, 1997. View at Google Scholar
  47. K. L. Rens and L. F. Greimann, “Ultrasonic approach for nondestructive testing of civil infrastructure,” Journal of Performance of Constructed Facilities, vol. 11, no. 3, pp. 97–104, 1997. View at Google Scholar
  48. W. W. El-Dakhakhni, A. A. Nassr, and M. T. Shedid, “Detection of ungrouted cells in concrete masonry constructions using a dielectric variation approach,” Journal of Engineering Mechanics, vol. 136, no. 4, Article ID 001004QEM, pp. 438–446, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. A. A. Nassr and W. W. El-Dakhakhni, “Damage detection of FRP-strengthened concrete structures using capacitance measurements,” Journal of Composites for Construction, vol. 13, no. 6, pp. 486–497, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. F. Rajabipour, J. Weiss, J. D. Shane, T. O. Mason, and S. P. Shah, “Procedure to interpret electrical conductivity measurements in cover concrete during rewetting,” Journal of Materials in Civil Engineering, vol. 17, no. 5, pp. 586–594, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. W. Liu, R. G. Hunsperger, M. J. Chajes, K. J. Folliard, and E. Kunz, “Corrosion detection of steel cables using time domain reflectometry,” Journal of Materials in Civil Engineering, vol. 14, no. 3, pp. 217–223, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. B. Sangoju, R. Gettu, B. H. Bharatkumar, and M. Neelamegam, “Chloride-induced corrosion of steel in cracked opc and ppc concretes: experimental study,” Journal of Materials in Civil Engineering, vol. 23, no. 7, pp. 1057–1066, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. H. So and S. G. Millard, “Assessment of corrosion rate of reinforcing steel in concrete using Galvanostatic pulse transient technique,” International Journal of Concrete Structures and Materials, vol. 1, no. 1, pp. 83–88, 2007. View at Google Scholar
  54. T. Parthiban, R. Ravi, and G. T. Parthiban, “Potential monitoring system for corrosion of steel in concrete,” Advances in Engineering Software, vol. 37, no. 6, pp. 375–381, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. M. M. B. Bola and C. M. Newtson, “Field evaluation of marine structures containing calcium nitrite,” Journal of Performance of Constructed Facilities, vol. 19, no. 1, pp. 28–35, 2005. View at Google Scholar
  56. B. Bavarian and L. Reiner, “Improving durability of reinforced concrete structures using migrating corrosion inhibators,” Corosion, Article ID 04323, 2004. View at Google Scholar
  57. W. J. McCarter and Ø. Vennesland, “Sensor systems for use in reinforced concrete structures,” Construction and Building Materials, vol. 18, no. 6, pp. 351–358, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. S. C. Pal, A. Mukherjee, and S. R. Pathak, “Corrosion behavior of reinforcement in slag concrete,” ACI Materials Journal, vol. 99, no. 6, pp. 1–7, 2002. View at Google Scholar
  59. A. Costa and J. Appleton, “Case studies of concrete deterioration in a marine environmental in Portugal,” Cement and Concrete Composites, vol. 24, no. 1, pp. 169–179, 2002. View at Google Scholar
  60. O. Klingoffer, T. Frolund, and E. Poulsen, “Rebar corrosion rate measurements for service life estimates,” in Proceedings of the ACI Fall Convention on Practical application of service life models, Toronto, Canada, 2000.
  61. D. Bjegovic, D. Mikulic, and D. Sekulic, “Non destructive corrosion rate monitoring for reinforced concrete structures,” in Proceedings of the 15th World Conference on Non-Destructive Testing (WCNDT '00), pp. 15–21, Rome, Italy, October 2000.
  62. N. J. Carnio, “Nondestructive techniques to investigate corrosion status in concrete structures,” Journal of Performance of Constructed Facilities, vol. 13, no. 3, pp. 96–106, 1999. View at Google Scholar
  63. A. Bagchi, J. Humar, H. Xu, and A. S. Noman, “Model-based damage identification in a continuous bridge using vibration data,” Journal of Performance of Constructed Facilities, vol. 24, no. 2, pp. 148–158, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. K. H. Hsieh, M. W. Halling, and P. J. Barr, “Overview of vibrational structural health monitoring with representative case studies,” Journal of Bridge Engineering, vol. 11, no. 6, Article ID 002606QBE, pp. 707–715, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. T. Ma, H. T. Yang, and C. Chang, “Structural damage diagnosis and assessment under seismic excitations,” Journal of Engineering Mechanics, vol. 131, no. 10, pp. 1036–1045, 2005. View at Google Scholar
  66. O. Deo, M. Sumanasooriya, and N. Neithalath, “Permeability reduction in pervious concretes due to clogging: experiments and modeling,” Journal of Materials in Civil Engineering, vol. 22, no. 7, Article ID 003007QMT, pp. 741–751, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. S. A. Durham, E. Heymsfield, and K. D. Tencleve, “Cracking and reinforcement corrosion in short-span precast concrete bridges,” Journal of Performance of Constructed Facilities, vol. 21, no. 5, pp. 390–397, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. W. J. McCarter, T. M. Chrisp, A. Butler, and P. A. M. Basheer, “Near-surface sensors for condition monitoring of cover-zone concrete,” Construction and Building Materials, vol. 15, no. 2-3, pp. 115–124, 2001. View at Publisher · View at Google Scholar · View at Scopus
  69. B. J. Lampacher and G. E. Blight, “Permeability and sorption properties of mature near-surface concrete,” Journal of Materials in Civil Engineering, vol. 10, no. 1, pp. 21–25, 1998. View at Google Scholar · View at Scopus
  70. I. L. Al-Qadi, R. H. Haddad, and S. M. Riad, “Detection of chlorides in concrete using low radio frequencies,” Journal of Materials in Civil Engineering, vol. 9, no. 1, pp. 29–34, 1997. View at Google Scholar · View at Scopus
  71. P. A. Classie, H. I. Elsayad, and I. G. Shaaban, “Absorption and sorptivity of cover concrete,” Journal of Materials in Civil Engineering, vol. 9, no. 3, pp. 105–110, 1997. View at Google Scholar
  72. G. E. Blight and B. J. Lampacher, “Applying covercrete absorption test to in-situ tests on structures,” Journal of Materials in Civil Engineering, vol. 7, no. 1, pp. 1–8, 1995. View at Publisher · View at Google Scholar · View at Scopus
  73. C. Maierhofer, H.-W. Reinhardt, and G. Dobmann, Eds., Non-Destructive Evaluation of Reinforced Concrete Structures, vol. 1 of Deterioration processes and standard test methods, Woodhead Publishing, Oxford, UK, 2010.
  74. C. Maierhofer, H.-W. Reinhardt, and G. Dobmann, Eds., Non-Destructive Evaluation of Reinforced Concrete Structures, vol. 2 of Non-destructive testing methods, Woodhead Publishing, Oxford, UK, 2010.