Table of Contents
Journal of Computational Engineering
Volume 2013, Article ID 942126, 8 pages
http://dx.doi.org/10.1155/2013/942126
Research Article

An Ant Colony Optimization Algorithm for Microwave Corrugated Filters Design

1Instituto ITACA, Universidad Politécnica de Valencia, Camino de Vera S/N, Edificio 8G, Acceso B, Planta 3, 46022 Valencia, Spain
2Departamento de Tecnologías de la Información y las Comunicaciones, Universidad Politécnica de Cartagena, Cartagena, Plaza del Hospital 1, 30202 Cartagena, Spain

Received 29 April 2013; Accepted 5 June 2013

Academic Editor: André Nicolet

Copyright © 2013 Ivan A. Mantilla-Gaviria et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Swanson and G. Macchiarella, “Microwave filter design by synthesis and optimization,” IEEE Microwave Magazine, vol. 8, no. 2, pp. 55–69, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. M. F. J. Nogales, J. P. García, J. Hinojosa, and A. Alvarez-Melcón, “Genetic algoritms applied to microwave filters optimization and design,” in Progress in Electromagnetics Research Symposium, pp. 99–103, Cambridge, Mass, USA, July 2008.
  3. D. Budimir and G. Goussetis, “Design of asymmetrical RF and microwave bandpass filters by computer optimization,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 4, pp. 1174–1178, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. J. V. M. Ros, P. S. Pacheco, H. E. González et al., “Fast automated design of waveguide filters using aggressive space mapping with a new segmentation strategy and a hybrid optimization algorithm,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 4, pp. 1130–1141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 2, pp. 397–407, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Rahmat-Samii and E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, Wiley-Interscience, New York, NY, USA, 1999.
  7. J. Nelder and R. Mead, “A simplex method for function minimization,” Computer Journal, vol. 7, pp. 308–313, 1965. View at Google Scholar
  8. M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of cooperating agents,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 26, no. 1, pp. 29–41, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Dorigo and T. Stützle, Ant Colony Optimization, MIT Press, Cambridge, Mass, USA, 2004.
  10. E. Rajo-lglesias and Ó. Quevedo-Teruel, “Linear array synthesis using an ant-colony-optimization-based algorithm,” IEEE Antennas and Propagation Magazine, vol. 49, no. 2, pp. 70–79, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Akdagli, K. Güney, and D. Karaboga, “Pattern nulling of linear antenna arrays by controlling only the element positions with the use of improved touring ant colony optimization algorithm,” Journal of Electromagnetic Waves and Applications, vol. 16, no. 10, pp. 1423–1441, 2002. View at Google Scholar · View at Scopus
  12. Ó. Quevedo-Teruel and E. Rajo-Iglesias, “Ant colony optimization in thinned array synthesis with minimum sidelobe level,” IEEE Antennas and Wireless Propagation Letters, vol. 5, no. 1, pp. 349–352, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Rocca, L. Manica, and A. Massa, “An improved excitation matching method based on an ant colony optimization for suboptimal-free clustering in sum-difference compromise synthesis,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 8, pp. 2297–2306, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Chang, C. Liao, W. B. Lin, L.-L. Chen, and X. Zheng, “A hybrid method based on differential evolution and continuous ant colony optimization and its application on wideband antenna design,” Progress in Electromagnetics Research, vol. 122, pp. 105–118, 2012. View at Google Scholar · View at Scopus
  15. M. Mussetta, F. Grimaccia, and R. E. Zich, “Comparison of different optimization techniques in the design of electromagnetic devices,” in Proceedings of IEEE World Congress on Computational Intelligence (WCCI '12), Brisbane, Australia, June 2012.
  16. O. Quevedo-Teruel, E. Rajo-Iglesias, and M. Ng Mou Kehn, “Numerical and experimental studies of split ring resonators loaded on the sidewalls of rectangular waveguides,” IET Microwaves, Antennas and Propagation, vol. 3, no. 8, pp. 1262–1270, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative learning approach to the traveling salesman problem,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 53–66, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, Dedham, Mass, USA, 1980.
  19. N. Marcuvitz, Waveguide Handbook, P. Peregrinus, London, UK, 1993.
  20. R. Levy, R. V. Snyder, and G. Matthaei, “Design of microwave filters,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 3, pp. 783–793, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Soto, V. E. Boria, J. M. Catalá-Civera, N. Chouaib, and M. Guglielmi, “Analysis, design and experimental verification of microwave filters for safety issues in open-ended waveguide systems,” IEEE Transactions on Microwave Theory and Techniques, vol. 48, no. 1, pp. 2133–2140, 2000. View at Google Scholar · View at Scopus
  22. A. Díaz-Morcillo, I. A. Mantilla-Gaviria, and J. V. Balbastre-Tejedor, “A mode-matching/finite element hybrid strategy for analizing waveguide discontinuities and resonant cavities,” in Progress In Electromagnetics Research Symposium (PIERS '08), Cambridge, Mass, USA, July 2008.
  23. D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. Ó. Quevedo-Teruel, E. Rajo-Iglesias, and A. Oropesa-García, “Hybrid algorithms for electromagnetic problems and the no-free-lunch framework,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 3, pp. 742–749, 2007. View at Publisher · View at Google Scholar · View at Scopus