Table of Contents
Journal of Computational Engineering
Volume 2014, Article ID 126905, 6 pages
http://dx.doi.org/10.1155/2014/126905
Research Article

Solution of Axisymmetric Potential Problem in Oblate Spheroid Using the Exodus Method

1College of Engineering, Technology, and Computer Science, Indiana University-Purdue University, Fort Wayne, IN 46805, USA
2Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA

Received 7 November 2013; Accepted 15 February 2014; Published 17 March 2014

Academic Editor: Quan Yuan

Copyright © 2014 O. D. Momoh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. L. Gates, “Derivation of the equations of atmospheric motion in Oblate Spheroidal Coordinates,” Journal of the Atmospheric Sciences, vol. 61, pp. 2478–2487, 2004. View at Google Scholar
  2. A. M. Al-Jumaily and F. M. Najim, “An approximation to the vibrations of oblate spheroidal shells,” Journal of Sound and Vibration, vol. 204, no. 4, pp. 561–574, 1997. View at Google Scholar · View at Scopus
  3. V. Punzo, S. Besio, S. Pittaluga, and A. Trequattrini, “Solution of Laplace equation on non axially symmetrical volumes,” IEEE Transactions on Applied Superconductivity, vol. 16, no. 2, pp. 1815–1818, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. R. F. Tuttle and S. K. Loyalka, “Gravitational collision efficiency of nonspherical aerosols II: motion of an oblate spheroid in a viscous fluid,” Nuclear Technology, vol. 69, no. 3, pp. 327–336, 1985. View at Google Scholar · View at Scopus
  5. P. W. Casper and R. B. Bent, “The effect of the earth's oblate spheroid shape on the accuracy of a time-of-arrival lightning ground strike locating system,” in Proceedings of the International Aerospace and Ground Conference on Lightning and Static Electricity, vol. 2, pp. 81.1–81.8, The National Aeronautics and Space Administration, The National Interagency Coordination Group (NICG), and Florida Institute, 1991.
  6. O. D. Momoh, M. N. O. Sadiku, and S. M. Musa, “A fixed random walk Monte Carlo computation of potential inside two conducting oblate spheroidal shells,” in Proceedings of the IEEE Southeastcon, pp. 196–200, Nashville, Tenn, USA, March 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. O. D. Momoh, M. N. O. Sadiku, and C. M. Akujuobi, “Solution of axisymmetric potential problem in spherical coordinates using Exodus method,” in Proceedings of the PIERS Conference, pp. 1110–1114, Cambridge, Mass, USA, July 2010. View at Scopus
  8. M. N. O. Sadiku, Numerical Techniques in Electromagnetics with MATLAB, CRC Press, Boca Raton, Fla, USA, 3rd edition, 2009.
  9. R. S. Alassar and H. M. Badr, “Analytical solution of oscillating inviscid flow over oblate spheroids with spheres and flat disks as special cases,” Ocean Engineering, vol. 24, no. 3, pp. 217–225, 1997. View at Google Scholar · View at Scopus
  10. O. D. Momoh, M. N. O. Sadiku, and C. M. Akujuobi, “Potential distribution computation in conducting prolate spheroidal shells using the exodus method,” IEEE Transactions on Magnetics, vol. 47, no. 5, pp. 1426–1429, 2011. View at Publisher · View at Google Scholar · View at Scopus