Table of Contents
Journal of Ceramics
Volume 2013, Article ID 280605, 9 pages
http://dx.doi.org/10.1155/2013/280605
Research Article

Mechanical Behaviour and Fracture Mechanics of Praseodymium Modified Lead Titanate Ceramics Prepared by Solid-State Reaction Route

Crystal Growth & Materials Research Laboratory, Department of Physics and Electronics, University of Jammu, Jammu 180006, India

Received 27 December 2012; Accepted 25 July 2013

Academic Editor: Zhenxing Yue

Copyright © 2013 Vishal Singh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. G. Evans and E. A. Charles, “Fracture toughness determination by indentation,” Journal of the American Ceramic Society, vol. 59, no. 7-8, pp. 371–372, 1976. View at Publisher · View at Google Scholar
  2. Y. Matsuo and H. Saski, “Effect of grain size on micro cracking in lead titanate ceramics,” Journal of the American Ceramic Society, vol. 49, no. 4, pp. 229–230, 1966. View at Publisher · View at Google Scholar
  3. T. Y. Tien and W. G. Carlson, “Effect of additive on properties of lead titanate,” Journal of the American Ceramic Society, vol. 45, no. 12, pp. 567–571, 1962. View at Publisher · View at Google Scholar
  4. I. Ueda and S. Ikegarni, “Piezoelectric properties of modified PbTiO3 ceramics,” Japanese Journal of Applied Physics, vol. 7, no. 3, pp. 236–242, 1968. View at Publisher · View at Google Scholar
  5. V. Singh, K. K. Bamzai, S. Suri, and N. Nidhi, “Preparation, structural and electrical characteristics of praseodymium modified lead titanate,” Ceramics International, vol. 37, no. 7, pp. 2655–2662, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Takahashi, “Influence of samarium substitution on dielectric properties of barium titanate based ceramics,” Ceramic Bulletin, vol. 69, pp. 691–695, 1990. View at Google Scholar
  7. P. Kumar, S. Singh, J. K. Juneja, C. Prakash, and K. K. Raina, “Influence of samarium substitution on dielectric properties of barium titanate based ceramics,” Modern Physics Letters B, vol. 23, no. 28, pp. 3419–3425, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Asaheron, C. Huse, G. Kuhn, and H. Neumann, “Microhardness of Sn-doped lnP,” Crystal Research and Technology, vol. 24, pp. 33–35, 1989. View at Google Scholar
  9. K. Balakrishnan, B. Vengatesan, N. Kanniah, and P. Ramasamy, “Growth and microindentation studies of CulnSe2 single crystals,” Journal of Materials Science Letters, vol. 9, no. 7, pp. 785–787, 1990. View at Publisher · View at Google Scholar · View at Scopus
  10. K. K. Bamzai, P. N. Kotru, and B. M. Wanklyn, “Fracture mechanics, crack propagation and microhardness studies on flux grown ErAlO3 single crystals,” Journal of Materials Science and Technology, vol. 16, no. 4, pp. 405–410, 2000. View at Google Scholar · View at Scopus
  11. P. R. Dhar, K. Bamzai, and P. N. Kotru, “Deformation and microhardness studies on natural apophyllite crystals,” Crystal Research and Technology, vol. 32, no. 4, pp. 537–544, 1997. View at Google Scholar · View at Scopus
  12. J. Guille and M. Sieskind, “Microindentation studies on BaFCl single crystals,” Journal of Materials Science, vol. 26, no. 4, pp. 899–903, 1991. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Ricote, L. Pardo, and B. Jiménez, “Mechanical characterization of calcium-modified lead titanate ceramics by indentation methods,” Journal of Materials Science, vol. 29, no. 12, pp. 3248–3254, 1994. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Buckle, “Progress in microindentation hardness testing,” International Materials Reviews, vol. 4, no. 1, pp. 49–100. View at Publisher · View at Google Scholar
  15. J. R. Pandya, L. J. Bhagia, and A. J. Shah, “Microhardness of rhombohedral crystals: calcite and sodium nitrate,” Bulletin of Materials Science, vol. 5, no. 1, pp. 79–82, 1983. View at Publisher · View at Google Scholar · View at Scopus
  16. C. A. Brookes, “The mechanical properties of cubic boron nitride-a perspective view,” Institute of Physics Conference Series, vol. 75, pp. 207–220, 1986. View at Google Scholar
  17. F. Kick, Das Gesetz der proportionalen Widerstände und seine Anwendungen, Felix, Leipzig, Germany, 1885.
  18. J. B. Quinn and G. D. Quinn, “Indentation brittleness of ceramics: a fresh approach,” Journal of Materials Science, vol. 32, no. 16, pp. 4331–4346, 1997. View at Google Scholar · View at Scopus
  19. C. Hays and E. G. Kendall, “An analysis of Knoop microhardness,” Metallography, vol. 6, no. 4, pp. 275–282, 1973. View at Google Scholar · View at Scopus
  20. R. Tickoo, R. P. Tandon, N. C. Mehra, and P. N. Kotru, “Dielectric and ferroelectric properties of lanthanum modified lead titanate ceramics,” Materials Science and Engineering B, vol. 94, no. 1, pp. 1–7, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Duran, J. F. F. Lozano, F. Capel, and C. Moure, “Large electromechanical anisotropic modified lead titanate ceramics. Part 2: dielectric, piezoelectric and mechanical properties,” Journal of Materials Science, vol. 24, no. 2, pp. 447–452, 1989. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Tickoo, R. P. Tandon, V. K. Hans, K. K. Bamzai, and P. N. Kotru, “Electromechanical and piezoelectric studies of lanthanum modified lead titanate ceramics,” Materials Science and Engineering B, vol. 100, no. 1, pp. 47–52, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Yamamoto, H. Igarashi, and K. Okazaki, “Dielectric, electromechanical, optical, and mechanical properties of lanthanum-modified lead titanate ceramics,” Journal of the American Ceramic Society, vol. 66, no. 5, pp. 363–366, 1983. View at Google Scholar · View at Scopus
  24. K. Okazaki, “Microstructure and properties of some electrooptic ceramics,” Ferroelectrics, vol. 49, no. 1, pp. 141–150, 1983. View at Publisher · View at Google Scholar · View at Scopus
  25. J. R. Cahoon, W. H. Broughton, and A. R. Kutzak, “The determination of yield strength from hardness measurements,” Metallurgical Transactions, vol. 2, no. 7, pp. 1979–1983, 1971. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Ishikaa and N. Shinkai, “Critical load for median crack initiation in vickers indentation of glasses,” Journal of the American Ceramic Society, vol. 65, no. 8, pp. C124–C127, 1980. View at Publisher · View at Google Scholar
  27. B. R. Lawn and A. G. Evans, “A model for crack initiation in elastic/plastic indentation fields,” Journal of Materials Science, vol. 12, no. 11, pp. 2195–2199, 1977. View at Publisher · View at Google Scholar · View at Scopus
  28. C. B. Ponton and R. D. Rawlings, “Dependence of the vickers indentation fracture toughness on the surface crack length,” British Ceramic, vol. 88, no. 3, pp. 83–90, 1989. View at Google Scholar · View at Scopus
  29. D. J. Bhat, “Elastic/plastic indentation damage in ceramics: the median/radial crack system,” Journal of the American Ceramic Society C, vol. 64, no. 11, pp. C-165–C-166, 1981. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Niihara, R. Morena, and D. P. H. Hasselman, “Evaluation of KIc of brittle solids by the indentation method with low crack-to-indent ratios,” Journal of Materials Science Letters, vol. 1, no. 1, pp. 13–16, 1982. View at Publisher · View at Google Scholar · View at Scopus