Table of Contents
Journal of Ceramics
Volume 2013, Article ID 370603, 4 pages
Research Article

Grain Boundary Resistivity of Yttria-Stabilized Zirconia at 1400°C

1Materials Science and Engineering Department, North Carolina State University, Raleigh, NC 27695-7907, USA
2Materials and Metallurgy Department, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
3Department of Mechanical Engineering, Engineering Center, ECME 114, University of Colorado, Boulder, CO 80309-0427, USA

Received 5 November 2012; Accepted 13 February 2013

Academic Editor: Young-Wook Kim

Copyright © 2013 J. Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The grain size dependence of the bulk resistivity of 3 mol% yttria-stabilized zirconia at 1400°C was determined from the effect of a dc electric field  V/cm on grain growth and the corresponding electric current during isothermal annealing tests. Employing the brick layer model, the present annealing test results were in accordance with extrapolations of the values obtained at lower temperature employing impedance spectroscopy and 4-point-probe dc. The combined values give that the magnitude of the grain boundary resistivity  ohm-cm. The electric field across the grain boundary width was 28–43 times the applied field for the grain size and current ranges in the present annealing test.