Table of Contents
Journal of Ceramics
Volume 2013 (2013), Article ID 734015, 6 pages
http://dx.doi.org/10.1155/2013/734015
Research Article

The Lattice Compatibility Theory: Arguments for Recorded I-III-O2 Ternary Oxide Ceramics Instability at Low Temperatures beside Ternary Telluride and Sulphide Ceramics

École Supérieure de Sciences et Techniques de Tunis (ESSTT), Université de Tunis, 63 Rue Sidi Jabeur, 5100 Mahdia, Tunisia

Received 29 October 2012; Revised 13 December 2012; Accepted 15 December 2012

Academic Editor: Joon-Hyung Lee

Copyright © 2013 K. Boubaker. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Singh, A. R. Rao, and V. Dutta, “Effect of pH on structural and morphological properties of spray deposited p-type transparent conducting oxide CuAlO2 thin films,” Materials Letters, vol. 62, no. 21-22, pp. 3613–3616, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Mei, J. Zhang, L. Wang, Z. Xing, Y. Zhu, and Y. Qian, “Preparation of mixed oxides Ca9Co12O28 and their electrochemical properties,” Materials Letters, vol. 82, pp. 1–3, 2012. View at Publisher · View at Google Scholar
  3. Z. F. Zhang, Z. M. Sun, and H. Hashimoto, “Deformation and fracture behavior of ternary compound Ti3SiC2 at 25–1300C,” Materials Letters, vol. 57, no. 7, pp. 1295–1299, 2003. View at Publisher · View at Google Scholar
  4. Y. F. Zhang, J. X. Zhang, Q. M. Lu, and Q. Y. Zhang, “Synthesis and characterization of Ca3Co4O9 nanoparticles by citrate sol-gel method,” Materials Letters, vol. 60, no. 20, pp. 2443–2446, 2006. View at Publisher · View at Google Scholar
  5. S. Matar, M. Lelogeas, D. Michau, and G. Demazeau, “Investigations on the high-pressure varieties of GaAsO4,” Materials Letters, vol. 10, no. 1-2, pp. 45–48, 1990. View at Publisher · View at Google Scholar
  6. F. M. Túnez, J. A. Gamboa, J. A. González, and M. Esquivel, “A new polymorph of GaAsO4,” Materials Letters, vol. 79, pp. 202–204, 2012. View at Publisher · View at Google Scholar
  7. A. N. Banerjee, R. Maity, and K. K. Chattopadhyay, “Preparation of p-type transparent conducting CuAlO2 thin films by reactive DC sputtering,” Materials Letters, vol. 58, no. 1-2, pp. 10–13, 2003. View at Publisher · View at Google Scholar
  8. S. Gao, Y. Zhao, P. Gou, N. Chen, and Y. Xie, “Preparation of CuAlO2 nanocrystalline transparent thin films with high conductivity,” Nanotechnology, vol. 14, no. 5, pp. 538–541, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Q. Chen, J. Jiang, B. Wang, and J. G. Hou, “Synthesis of tin-doped indium oxide nanowires by self-catalytic VLS growth,” Journal of Physics D, vol. 37, pp. 3319–3322, 2004. View at Publisher · View at Google Scholar
  10. S. Y. Li, P. Lin, C. Y. Lee, T. Y. Tseng, and C. J. Huang, “Effect of Sn dopant on the properties of ZnO nanowires,” Journal of Physics D, vol. 37, pp. 2274–2282, 2004. View at Publisher · View at Google Scholar
  11. M. Liu, J. Yang, S. Feng et al., “Composite photoanodes of Zn2SnO4 nanoparticles modified SnO2 hierarchical microspheres for dye-sensitized solar cells,” Materials Letters, vol. 76, pp. 215–218, 2012. View at Publisher · View at Google Scholar
  12. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono, “P-type electrical conduction in transparent thin films of CuAlO2,” Nature, vol. 389, no. 6654, pp. 939–942, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Minegishi, Y. Koiwai, Y. Kikuchi, YanoK, and A. Shimizu, “Characterization of interface electronic properties of low-temperature ultrathin oxides and oxynitrides formed on Si(111) surfaces by contactless capacitance-voltage and photoluminescence methods,” Journal of Applied Physics, vol. 36, pp. 1453–1460, 1997. View at Publisher · View at Google Scholar
  14. D. M. Hoffman, B. Singh, and J. H. Thomas, Handbook of Vacuum Science and Technology, Academic Press, San Diego, Calif, USA, 1998.
  15. R. A. Powell and S. M. Rossnagel, PVD for Microelectronics: Sputter Deposition Applied to Semiconduct or Manufacturing, Academic Press, San Diego, Calif, USA, 1999.
  16. H. Dlala, M. Amlouk, S. Belgacem, P. Girard, and D. Barjon, “Structural and optical properties of Ag2S thin films prepared by spray pyrolysis,” EPJ Applied Physics, vol. 2, no. 1, pp. 13–16, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Amlouk, M. Dachraoui, S. Belgacem, and R. Bennaceur, “Structural, optical and electrical properties of SnO2:F and CdS airless sprayed layers,” Solar Energy Materials, vol. 15, no. 6, pp. 453–461, 1987. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Khélia, K. Boubaker, T. Ben Nasrallah et al., “Morphological and thermal properties of β-SnS2 crystals grown by spray pyrolysis technique,” Journal of Crystal Growth, vol. 311, no. 4, pp. 1032–1035, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Kamoun, S. Belgacem, M. Amlouk et al., “Structure, surface composition, and electronic properties of β-In2S3 and β-In2-xAlxS3,” Journal of Applied Physics, vol. 89, no. 5, pp. 2766–2771, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Amlouk, M. A. Ben Saïd, N. Kamoun, S. Belgacem, N. Brunet, and D. Barjon, “Acoustic properties of β-In2S3 thin films prepared by spray,” Japanese Journal of Applied Physics, Part 1, vol. 38, no. 1, pp. 26–30, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Guezmir, T. B. Nasrallah, K. Boubaker, M. Amlouk, and S. Belgacem, “Optical modeling of compound CuInS2 using relative dielectric function approach and Boubaker polynomials expansion scheme BPES,” Journal of Alloys and Compounds, vol. 481, no. 1-2, pp. 543–548, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Kamoun, R. Bennaceur, M. Amlouk et al., “Optical properties of InS layers deposited using an airless spray technique,” Physica Status Solidi A, vol. 169, no. 1, pp. 97–104, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Kamoun, S. Belgacem, M. Amlouk, R. Bennaceur, K. Abdelmoula, and A. Belhadj Amara, “Structural and morphological characterizations of airless spray CuInS2 and InS thin films,” Journal de Physique, vol. 4, no. 3, pp. 473–491, 1994. View at Publisher · View at Google Scholar · View at Scopus
  24. Z. Aissa, M. Amlouk, T. Ben Nasrallah, J. C. Bernède, and S. Belgacem, “Effect of S/In concentration ratio on the physical properties of AgInS2-sprayed thin films,” Solar Energy Materials and Solar Cells, vol. 91, no. 6, pp. 489–494, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. Z. Aissa, T. Ben Nasrallah, M. Amlouk, J. C. Bernède, and S. Belgacem, “Some physical investigations on AgInS2 sprayed thin films,” Solar Energy Materials and Solar Cells, vol. 90, no. 7-8, pp. 1136–1146, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Lazzez, K. Boubaker, T. B. Nasrallah et al., “Structural and optoelectronic properties of In-Zn-S sprayed layers,” Acta Physica Polonica A, vol. 114, no. 4, pp. 869–880, 2008. View at Google Scholar · View at Scopus
  27. M. Bouaziz, K. Boubaker, M. Amlouk, and S. Belgacem, “Effect of Cu/Sn concentration ratio on the phase equilibrium-related properties of Cu-Sn-S sprayed materials,” Journal of Phase Equilibria and Diffusion, vol. 31, no. 6, pp. 498–503, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Bouaziz, M. Amlouk, and S. Belgacem, “Structural and optical properties of Cu2SnS3 sprayed thin films,” Thin Solid Films, vol. 517, no. 7, pp. 2527–2530, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Carelli, F. Liberatore, L. Scipione, R. Musio, and O. Sciacovelli, “On the structure of intermediate adducts arising from dithionite reduction of pyridinium salts: a novel class of derivatives of the parent sulfinic acid,” Tetrahedron Letters, vol. 41, no. 8, pp. 1235–1240, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. S. H. Vosko, L. Wilk, and M. Nusair, “Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis,” Canadian Journal of Physics, vol. 58, p. 1200, 1980. View at Publisher · View at Google Scholar
  31. D. D. Koelling and B. N. Harmon, “A technique for relativistic spin-polarised calculations,” Journal of Physics C, vol. 10, no. 16, pp. 3107–3114, 1977. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Dixit, R. Saniz, D. Lamoen, and B. Partoens, “The quasiparticle band structure of zincblende and rocksalt ZnO,” Journal of Physics: Condensed Matter, vol. 22, no. 12, Article ID 125505, 2010. View at Google Scholar
  33. S. H. Vosko and L. Wilk, “Influence of an improved local-spin-density correlation-energy functional on the cohesive energy of alkali metals,” Physical Review B, vol. 22, no. 8, pp. 3812–3815, 1980. View at Publisher · View at Google Scholar · View at Scopus
  34. W. Liang and M. H. Whangbo, “Conductivity anisotropy and structural phase transition in Covellite CuS,” Solid State Communications, vol. 85, no. 5, pp. 405–408, 1993. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Nozaki, K. Shibata, and N. Ohhashi, “Metallic hole conduction in CuS,” Journal of Solid State Chemistry, vol. 91, no. 2, pp. 306–311, 1991. View at Publisher · View at Google Scholar · View at Scopus
  36. Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Tech, New Series, II/16, Diamagnetic Susceptibility, Springer, Heidelberg, Germany, 1986.
  37. Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, New Series, III/19, Subvolumes a to i2, Magnetic Properties of Metals, Springer, Heidelberg, Germany, 1986–1992.
  38. Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, New Series, II/2, II/8, II/10, II/11,and II/12a,Coordination and Organometallic Transition Metal Compounds, Springer, Heidelberg, Germany, 1966-1984.
  39. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Butterworth-Heinemann, Oxford, UK, 2nd edition, 1997.
  40. P. Petkova and K. Boubaker, “The Lattice Compatibility Theory (LCT): an attempt to explain Urbach tailing patterns in copper-doped bismuth sillenites (BSO) and germanates (BGO),” Journal of Alloys and Compounds, vol. 546, pp. 176–179, 2013. View at Publisher · View at Google Scholar
  41. K. Boubaker, “Preludes to the Lattice Compatibility Theory LCT: urbach tailing controversial behavior in some nanocompounds,” ISRN Nanomaterials, vol. 2012, Article ID 173198, 4 pages, 2012. View at Publisher · View at Google Scholar
  42. K. Boubaker, M. Amlouk, Y. Louartassi, and H. Labiadh, “About unexpected crystallization behaviors of some ternary oxide and sulfide ceramics within lattice compatibility theory LCT framework,” Journal of the Australian Ceramic Society, vol. 49, no. 1, pp. 115–117, 2013. View at Google Scholar
  43. A. Nattestad, X. Zhang, U. Bach, and Y. Cheng, “Dye-sensitized CuAlO2 photocathodes for tandem solar cell applications,” Journal of Photonics for Energy, vol. 1, no. 1, Article ID 011103, 2011. View at Publisher · View at Google Scholar
  44. J. E. Clayton, D. P. Cann, and N. Ashmore, “Synthesis and processing of AgInO2 delafossite compounds by cation exchange reactions,” Thin Solid Films, vol. 411, pp. 140–146, 2002. View at Publisher · View at Google Scholar
  45. K. Y. Jung, S. B. Park, and S. K. Ihm, “Local structure and photocatalytic activity of B2O3-SiO2/TiO2 ternary mixed oxides prepared by sol-gel method,” Applied Catalysis B, vol. 51, no. 4, pp. 239–245, 2004. View at Publisher · View at Google Scholar · View at Scopus