Table of Contents
Journal of Ceramics
Volume 2013 (2013), Article ID 906748, 8 pages
http://dx.doi.org/10.1155/2013/906748
Research Article

Experimental Study on LTCC Glass-Ceramic Based Dual Segment Cylindrical Dielectric Resonator Antenna

1Department of Electronics Engineering, Indian School of Mines, Dhanbad 826004, India
2Department of Electronics Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
3Department of Ceramic Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
4School of Physics, University of Hyderabad, Hyderabad 500 046, India

Received 21 November 2012; Accepted 10 February 2013

Academic Editor: Baolin Wang

Copyright © 2013 Ravi Kumar Gangwar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. K. Mongia and P. Bhartia, “Dielectric resonator antennas: a review and general design relations for resonant frequency and bandwidth,” International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering, vol. 4, no. 3, pp. 230–247, 1994. View at Google Scholar · View at Scopus
  2. R. K. Mongia and A. Ittipiboon, “Theoretical and experimental investigations on rectangular dielectric resonator antennas,” IEEE Transactions on Antennas and Propagation, vol. 45, no. 9, pp. 1348–1356, 1997. View at Google Scholar · View at Scopus
  3. P. Rezaei, M. Hakkak, and K. Forooraghi, “Design of wide-band dielectric resonator antenna with a two-segment structure,” Progress in Electromagnetics Research, vol. 66, pp. 111–124, 2006. View at Google Scholar · View at Scopus
  4. D. Kajfez and A. A. Kishk, “Dielectric resonator antenna-possible candidate for adaptive antenna arrays,” in Proceedings of the VITEL, International Symposium on Telecommunications, Next Generation Networks and Beyond, Portoroz, Slovenia, May 2002.
  5. M. Saed and R. Yadla, “Microstrip-fed low profile and compact dielectric resonator antennas,” Progress in Electromagnetics Research, vol. 56, pp. 151–162, 2006. View at Google Scholar · View at Scopus
  6. A. Petosa, Dielectric Resonator Antennas Handbook, Artech House, London, UK, 2007.
  7. Y. Ge and K. P. Esselle, “A dielectric resonator antenna for UWB applications,” in Proceedings of the IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting (APSURSI '09), Charleston, SC, USA, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. D. W. Kim, D. G. Lee, and K. S. Hong, “Low-temperature firing and microwave dielectric properties of BaTi4O9 with Zn-B-O glass system,” Materials Research Bulletin, vol. 36, no. 3-4, pp. 585–595, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Mailadil Sebastian, “Dielectric materials for wireless communication,” in Low Temperature Cofired Ceramics, Chapter 12, pp. 445–511, Elsevier publication, 2008. View at Google Scholar
  10. C. C. Cheng, T. E. Hsieh, and I. N. Lin, “The effect of composition on Ba-Nd-Sm-Ti-O microwave dielectric materials for LTCC application,” Journal of European Ceramic Society, vol. 79, no. 2-3, pp. 119–123, 2003. View at Google Scholar
  11. J. M. Wu and H. L. Huang, “Microwave properties of zinc, barium and lead borosilicate glasses,” Journal of Non-Crystalline Solids, vol. 260, no. 1-2, pp. 116–124, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Valant and D. Suvorov, “Microstructural phenomena in low-firing ceramics,” Materials Chemistry and Physics, vol. 79, no. 2-3, pp. 104–110, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. R. R. Tummala, “Ceramic and glass-ceramic packaging in the 1990s,” Journal of American Ceramic Society, vol. 74, no. 5, pp. 895–908, 1991. View at Google Scholar
  14. D.-Y. Lee, S.-J. Yoon, J. H. Yeo et al., “Crystal structure and microwave dielectric properties of La(Mg1/2Ti1/2)O3 ceramics,” Journal of Materials Science Letters, vol. 19, no. 2, pp. 131–134, 2000. View at Publisher · View at Google Scholar
  15. M. P. Seabra and V. M. Ferreira, “Synthesis of La(Mg0.5Ti0.5)O3 ceramics for microwave applications,” Materials Research Bulletin, vol. 37, no. 2, pp. 255–262, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Lin, L. Luo, and W. Chen, “Microwave dielectric properties of low temperature co-fired glass-ceramic based on B2O3-La2O3-MgO glass with La(Mg0.5Ti0.5)O3 ceramics,” Materials Letters, vol. 62, no. 4-5, pp. 611–614, 2008. View at Publisher · View at Google Scholar
  17. B. W. Hakki and P. D. Coleman, “A dielectric resonator method of measuring inductive capacities in the millimeter range,” IEEE Transactions on Microwave Theory and Techniques, vol. 8, no. 4, pp. 402–410, 1960. View at Google Scholar
  18. D. Kajfez and E. J. Hwan, “Q-factor measurement with network analyzer,” IEEE Transactions on Microwave Theory and Techniques, vol. 32, no. 7, pp. 666–670, 1984. View at Google Scholar · View at Scopus
  19. A. A. Kishk, A. W. Glisson, and G. P. Junker, “Study of broadband dielectric resonator antennas,” in Proceedings of the Antenna Application Symposium, pp. 45–68, 1999.
  20. A. A. Kishk, A. W. Glisson, and D. Kajfez, “Computed resonant frequency and far fields of isolated disks,” in Proceedings of the IEEE Antennas and Propagation International Symposium, pp. 408–411, Ann Arbor, Mich, USA, 1993.
  21. M. Cooper, A. Petosa, A. Ittipiboon, and J. S. Wight, “Investigation of dielectric resonator antennas for L-band communications,” in Antenna Technology and Applied Electromagnetics Symposium (ANTEM '96), pp. 167–170, Ottawa, Canada, August 1996.
  22. G. P. Junker, A. A. Kishk, A. W. Glisson, and D. Kajfez, “Effect of fabrication imperfections for ground-plane-backed dielectric-resonator antennas,” IEEE Antennas and Propagation Magazine, vol. 37, no. 1, pp. 40–47, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Cooper, Investigation of current and novel rectangular dielectric resonator antennas for broadband applications at L-Band [M.S. thesis], Carleton University, 1997.