Table of Contents
Journal of Chaos
Volume 2013, Article ID 723581, 8 pages
http://dx.doi.org/10.1155/2013/723581
Research Article

Synchronization and Stabilization of Chaotic Dynamics in a Quasi-1D Bose-Einstein Condensate

1Department of Physics, Lagos State University, Ojo, Nigeria
2Department of Physical Sciences, Redeemers University, Km 46, Lagos-Ibadan Expressway, Redemption City, Mowe, Nigeria
3Department of Physics, Lancaster University, Lancaster LA1 4YB, UK

Received 10 August 2013; Revised 18 November 2013; Accepted 18 November 2013

Academic Editor: René Yamapi

Copyright © 2013 B. A. Idowu and U. E. Vincent. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. S. Pikovsky, M. G. Rosenblum, and J. Kurths, Synchronization—A Unified Approach to Nonlinear Science, Cambridge University Press, Cambridge, UK, 2001.
  2. M. Lakshmanan and K. Murali, Chaos in Nonlinear Oscillators: Controlling and Synchronization, World Scientific, Singapore, 1996.
  3. E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Physical Review Letters, vol. 64, no. 11, pp. 1196–1199, 1990. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Fujisaka and T. Yamada, “Stability theory of synchronized motion in coupled-oscillator systems,” Progress of Theoretical Physics, vol. 69, no. 1, pp. 32–47, 1983. View at Publisher · View at Google Scholar
  5. G. Chen and X. Dong, From Chaos to Order: Methodologies, Perspectives and Applications, World Scientific, Singapore, 1998.
  6. J. Lü, J. Lu, and S. Chen, Chaotic Time Series Analysis and Its Applications, Wuhan University Press, Wuhan, China, 2002.
  7. L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Physical Review Letters, vol. 64, no. 8, pp. 821–824, 1990. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Kocarev and U. Parlitz, “Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems,” Physical Review Letters, vol. 76, no. 11, pp. 1816–1819, 1996. View at Google Scholar · View at Scopus
  9. M. C. Ho and Y. C. Hung, “Synchronization of two different chaotic systems using generalized active network,” Physics Letters A, vol. 301, pp. 5-6–428, 2002. View at Publisher · View at Google Scholar
  10. U. E. Vincent and J. A. Laoye, “Synchronization and control of directed transport in chaotic ratchets via active control,” Physics Letters A, vol. 363, no. 1-2, pp. 91–95, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. U. E. Vincent and J. A. Laoye, “Synchronization, anti-synchronization and current transports in non-identical chaotic ratchets,” Physica A, vol. 384, no. 2, pp. 230–240, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Lei, W. Xu, J. Shen, and T. Fang, “Global synchronization of two parametrically excited systems using active control,” Chaos, Solitons and Fractals, vol. 28, no. 2, pp. 428–436, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. B. A. Idowu, U. E. Vincent, and A. N. Njah, “Synchronization of chaos in non-identical parametrically excited systems,” Chaos, Solitons and Fractals, vol. 39, no. 5, pp. 2322–2331, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Guo, U. E. Vincent, and B. A. Idowu, “Synchronization of chaos in RCL-shunted Josephson junction using a simple adaptive controller,” Physica Scripta, vol. 79, no. 3, Article ID 035801, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Lu, X. Wu, X. Han, and J. Lü, “Adaptive feedback synchronization of a unified chaotic system,” Physics Letters A, vol. 329, no. 4-5, pp. 327–333, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Sundarapandian, “Adaptive control and synchronization of hyperchaotic Lu system,” International Journal of Computer Science, Engineering and Information Technology, vol. 1, no. 2, pp. 29–40, 2011. View at Google Scholar
  17. V. Sundarapandian, “Adaptive control and synchronization of hyperchaotic Newton-Leipnik system,” International Journal of Advanced Information Technology, vol. 1, no. 3, pp. 22–33, 2011. View at Publisher · View at Google Scholar
  18. J. Lu, J. Cao, and D. W. C. Ho, “Adaptive stabilization and synchronization for chaotic Lur'e systems with time-varying delay,” IEEE Transactions on Circuits and Systems I, vol. 55, no. 5, pp. 1347–1356, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. W. He, F. Qian, J. Cao, and Q. Han, “Impulsive synchronization of two nonidentical chaotic systems with time-varying delay,” Physics Letters A, vol. 375, no. 3, pp. 498–504, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Cao, D. W. C. Ho, and Y. Yang, “Projective synchronization of a class of delayed chaotic systems via impulsive control,” Physics Letters A, vol. 373, no. 35, pp. 3128–3133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. W. He and J. Cao, “Generalized synchronization of chaotic systems: an auxiliary system approach via matrix measure,” Chaos, vol. 19, no. 1, Article ID 013118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. U. E. Vincent, “Controlling directed transport in inertia ratchets via adaptive backstepping control,” Acta Physica Polonica B, vol. 38, pp. 2459–2469, 2007. View at Google Scholar
  23. X. Tan, J. Zhang, and Y. Yang, “Synchronizing chaotic systems using backstepping design,” Chaos, Solitons and Fractals, vol. 16, no. 1, pp. 37–45, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Li and J. Cao, “Stabilisation and synchronisation of chaotic systems via hybrid control,” IET Control Theory and Applications, vol. 1, no. 3, pp. 795–801, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. U. E. Vincent, A. Kenfack, D. V. Senthilkumar, D. Mayer, and J. Kurths, “Current reversals and synchronization in coupled ratchets,” Physical Review E, vol. 82, no. 4, Article ID 046208, 5 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. R. Parvathi, B. M. Krishna, S. Rajesh, M. P. John, and V. M. Nandakumaran, “Synchronization and control of chaos in coupled chaotic multimode Nd:YAG lasers,” Physics Letters A, vol. 373, no. 1, pp. 96–101, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. S. K. Dana, P. K. Roy, G. C. Sethia, A. Sen, and D. C. Sengupta, “Taming of chaos and synchronisation in RCL-shunted Josephson junctions by external forcing,” IEE Proceedings: Circuits, Devices and Systems, vol. 153, no. 5, pp. 453–460, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. L. Feng and K. Shen, “Chaos synchronization in RCL-shunted Josephson junctions via a common chaos driving,” European Physical Journal B, vol. 61, no. 1, pp. 105–110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. A. N. Njah, “Synchronization via active control of identical and non-identical ϕ6 chaotic oscillators with external excitation,” Journal of Sound and Vibration, vol. 327, no. 3–5, pp. 322–332, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. N. J. Corron, S. D. Pethel, and B. A. Hopper, “Controlling chaos with simple limiters,” Physical Review Letters, vol. 84, no. 17, pp. 3835–3838, 2000. View at Google Scholar · View at Scopus
  31. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, “Observation of Bose-Einstein condensation in a dilute atomic vapor,” Science, vol. 269, no. 5221, pp. 198–201, 1995. View at Google Scholar · View at Scopus
  32. C. C. Bradley, C. A. Sackeu, J. J. Tolleu, and R. G. Hulet, “Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions,” Physical Review Letters, vol. 75, no. 9, pp. 1687–1690, 1995. View at Publisher · View at Google Scholar
  33. G. S. Chong, W. H. Hai, and Q. T. Xie, “Spatial chaos of trapped Bose-Einstein condensate in one-dimensional weak optical lattice potential,” Chaos, vol. 14, no. 2, pp. 217–223, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. G. S. Chong, W. H. Hai, and Q. T. Xie, “Controlling chaos in a weakly coupled array of Bose-Einstein condensates,” Physical Review E, vol. 71, no. 1, Article ID 016202, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. Z. X. Wang and K. Shen, “Anti-control of chaos in Bose-Einstein condensates,” Central European Journal of Physics, vol. 6, no. 3, pp. 402–406, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. Z. X. Wang, X. H. Zhang, and K. Shen, “Controlling chaotic behavior in a Bose-Einstein condensate with linear feedback,” Communications in Theoretical Physics, vol. 50, no. 1, pp. 215–219, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Bucker, T. Berrada, S. van Frank et al., “Vibrational state inversion of a Bose-Einstein condensate: optimal control and state tomography,” Journal of Physics B, vol. 46, no. 10, Article ID 104012, 2013. View at Publisher · View at Google Scholar
  38. K. Beauchard, H. Lange, and H. Teismann, “Local exact controllability of a 1D Bose-Einstein condensate in a time-varying box,” http://arxiv.org/abs/1303.2713.
  39. R. Barnett, E. Chen, and G. Refael, “Vortex synchronization in Bose-Einstein condensates: a time-dependent Gross-Pitaevskii equation approach,” New Journal of Physics, vol. 12, Article ID 043004, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. J. F. Heagy, T. L. Carroll, and L. M. Pecora, “Desynchronization by periodic orbits,” Physical Review E, vol. 52, no. 2, pp. R1253–R1256, 1995. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Gao, Z. Chen, and Z. Yuan, “Control for the synchronization of Chen system via a single nonlinear input,” Journal of Control Theory and Applications, vol. 4, no. 3, pp. 297–301, 2006. View at Publisher · View at Google Scholar
  42. J. J. Yan, “Design of robust controllers for uncertain chaotic systems with nonlinear inputs,” Chaos, Solitons and Fractals, vol. 19, no. 3, pp. 541–547, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Hong, J. Huang, and Y. S. Xu, “On an output feedback finite-time stabilization problem,” IEEE Transactions on Automatic Control, vol. 46, no. 2, pp. 305–309, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. S. A. Haine and J. J. Hope, “Mode selectivity and stability of continuously pumped atom lasers,” Physical Review A, vol. 68, no. 2, Article ID 023607, 7 pages, 2003. View at Google Scholar · View at Scopus
  45. S. A. Haine, A. J. Ferris, J. D. Close, and J. J. Hope, “Control of an atom laser using feedback,” Physical Review A, vol. 69, no. 1, Article ID 013605, 6 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus