Table of Contents
Journal of Computational Medicine
Volume 2013, Article ID 534073, 8 pages
http://dx.doi.org/10.1155/2013/534073
Research Article

Mathematical Modeling of Melanoma Cell Migration with an Elastic Continuum Model for the Evaluation of the Influence of Tumor Necrosis Factor-Alpha on Migration

1Instituto de Engenharia Biomédica, Departamento de Engenharia Elétrica, CTC, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
2Centro de Ciências da Saúde e do Esporte, Universidade do Estado de Santa Catarina, 88080-350 Florianópolis, SC, Brazil

Received 18 April 2013; Revised 23 August 2013; Accepted 23 August 2013

Academic Editor: Hiroshi Watabe

Copyright © 2013 Julia Vianna Gallinaro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. American Cancer Society, “Melanoma Skin Cancer Overview,” 2011, http://www.cancer.org/Cancer/SkinCancer-Melanoma/index.
  2. American Cancer Society, “Cancer Facts & Figures,” 2011, http://www.cancer.org/Research/CancerFactsFigures/CancerFactsFigures/cancer-facts-figures-2011.
  3. V. Gray-Schopfer, C. Wellbrock, and R. Marais, “Melanoma biology and new targeted therapy,” Nature, vol. 445, no. 7130, pp. 851–857, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Breslow, “Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma,” Annals of Surgery, vol. 172, no. 5, pp. 902–908, 1970. View at Google Scholar · View at Scopus
  5. A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, “Cancer-related inflammation,” Nature, vol. 454, no. 7203, pp. 436–444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Ben-Eliyahu, “The promotion of tumor metastasis by surgery and stress: immunological basis and implications for psychoneuroimmunology,” Brain, Behavior, and Immunity, vol. 17, supplement 1, pp. S27–S36, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Balkwill and L. M. Coussens, “Cancer: an inflammatory link,” Nature, vol. 431, no. 7007, pp. 405–406, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. C. M. G. Marques, Tissue Engineered Human Skin Models to Study the Effect of Inflammation on Melanoma Invasion, University of Sheffield, Sheffield, UK, 2010.
  9. D. A. Lauffenburger and A. F. Horwitz, “Cell migration: a physically integrated molecular process,” Cell, vol. 84, no. 3, pp. 359–369, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. A. J. Ridley, M. A. Schwartz, K. Burridge et al., “Cell migration: integrating signals from front to back,” Science, vol. 302, no. 5651, pp. 1704–1709, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Friedl and K. Wolf, “Tumour-cell invasion and migration: diversity and escape mechanisms,” Nature Reviews Cancer, vol. 3, no. 5, pp. 362–374, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Zhu, P. C. Eves, E. Katerinaki et al., “Melanoma cell attachment, invasion, and integrin expression is upregulated by tumor necrosis factor α and suppressed by α melanocyte stimulating hormone,” Journal of Investigative Dermatology, vol. 119, no. 5, pp. 1165–1171, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Zhu, R. Lalla, P. Eves et al., “Melanoma cell migration is upregulated by tumour necrosis factor-α and suppressed by α-melanocyte-stimulating hormone,” British Journal of Cancer, vol. 90, no. 7, pp. 1457–1463, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Katerinaki, J. W. Haycock, R. Lalla et al., “Sodium salicylate inhibits TNF-α-induced NF-κB activation, cell migration, invasion and ICAM-1 expression in human melanoma cells,” Melanoma Research, vol. 16, no. 1, pp. 11–22, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Redpath, C. M. G. Marques, C. Dibden, A. Waddon, R. Lalla, and S. MacNeil, “Ibuprofen and hydrogel-released ibuprofen in the reduction of inflammation-induced migration in melanoma cells,” British Journal of Dermatology, vol. 161, no. 1, pp. 25–33, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Cantón, P. C. Eves, M. Szabo et al., “Tumor necrosis factor α increases and α-melanocyte-stimulating hormone reduces uveal melanoma invasion through fibronectin,” Journal of Investigative Dermatology, vol. 121, no. 3, pp. 557–563, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. J. H. Kunishige, D. G. Brodland, and J. A. Zitelli, “Surgical margins for melanoma in situ,” Journal of the American Academy of Dermatology, vol. 66, no. 3, pp. 438–444, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Anderson, M. Chaplain, E. Newman, R. Steele, and A. Thompson, “Mathematical modelling of tumour invasion and metastasis,” Journal of Theoretical Medicine, vol. 2, no. 2, pp. 129–151, 2000. View at Publisher · View at Google Scholar
  19. A. R. A. Anderson, “A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion,” Mathematical Medicine and Biology, vol. 22, no. 2, pp. 163–186, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Ciarletta, L. Foret, and M. B. Amar, “The radial growth phase of malignant melanoma: multi-phase modelling, numerical simulations and linear stability analysis,” Journal of the Royal Society Interface, vol. 8, no. 56, pp. 345–368, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Eikenberry, C. Thalhauser, and Y. Kuang, “Tumor-immune interaction, surgical treatment, and cancer recurrence in a mathematical model of melanoma,” PLoS Computational Biology, vol. 5, no. 4, Article ID e1000362, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Tohya, A. Mochizuki, S. Imayama, and Y. Iwasa, “On rugged shape of skin tumor (basal cell carcinoma),” Journal of Theoretical Biology, vol. 194, no. 1, pp. 65–78, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Friedl and D. Gilmour, “Collective cell migration in morphogenesis, regeneration and cancer,” Nature Reviews Molecular Cell Biology, vol. 10, no. 7, pp. 445–457, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. M. A. J. Chaplain, “Multiscale mathematical modelling in biology and medicine,” IMA Journal of Applied Mathematics, vol. 76, no. 3, pp. 371–388, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. M. L. Wynn, P. M. Kulesa, and S. Schnell, “Computational modelling of cell chain migration reveals mechanisms that sustain follow-the-leader behaviour,” Journal of the Royal Society, Interface, vol. 9, no. 72, pp. 1576–1588, 2012. View at Publisher · View at Google Scholar
  26. Q. Mi, D. Swigon, B. Rivière, S. Cetin, Y. Vodovotz, and D. J. Hackamz, “One-dimensional elastic continuum model of enterocyte layer migration,” Biophysical Journal, vol. 93, no. 11, pp. 3745–3752, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. K. C. Smith and J. C. Weaver, “Electrodiffusion of molecules in aqueous media: a robust, discretized description for electroporation and other transport phenomena,” IEEE Transactions on Bio-Medical Engineering, vol. 59, no. 6, pp. 1514–1522, 2012. View at Publisher · View at Google Scholar
  28. H. Lyng, O. Haraldseth, and E. K. Rofstad, “Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging,” Magnetic Resonance in Medicine, vol. 43, no. 6, pp. 828–836, 2000. View at Google Scholar
  29. R. Ananthakrishnan and A. Ehrlicher, “The forces behind cell movement,” International Journal of Biological Sciences, vol. 3, no. 5, pp. 303–317, 2007. View at Google Scholar · View at Scopus
  30. C. A. Brunner, A. Ehrlicher, B. Kohlstrunk, D. Knebel, J. A. Käs, and M. Goegler, “Cell migration through small gaps,” European Biophysics Journal, vol. 35, no. 8, pp. 713–719, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Prass, K. Jacobson, A. Mogilner, and M. Radmacher, “Direct measurement of the lamellipodial protrusive force in a migrating cell,” Journal of Cell Biology, vol. 174, no. 6, pp. 767–772, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. P. A. DiMilla, K. Barbee, and D. A. Lauffenburger, “Mathematical model for the effects of adhesion and mechanics on cell migration speed,” Biophysical Journal, vol. 60, no. 1, pp. 15–37, 1991. View at Google Scholar · View at Scopus
  33. G. M. Anderson, M. T. Nakada, and M. DeWitte, “Tumor necrosis factor-α in the pathogenesis and treatment of cancer,” Current Opinion in Pharmacology, vol. 4, no. 4, pp. 314–320, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Kuninaka, T. Yano, H. Yokoyama et al., “Direct influences of pro-inflammatory cytokines (IL-1β, TNF-α, IL-6) on the proliferation and cell-surface antigen expression of cancer cells,” Cytokine, vol. 12, no. 1, pp. 8–11, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. A. B. Beshir, G. Ren, A. N. Magpusao, L. M. Barone, K. C. Yeung, and G. Fenteany, “Raf kinase inhibitor protein suppresses nuclear factor-κB-dependent cancer cell invasion through negative regulation of matrix metalloproteinase expression,” Cancer Letters, vol. 299, no. 2, pp. 137–149, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. O. Debeir, V. Mégalizzi, N. Warzée, R. Kiss, and C. Decaestecker, “Videomicroscopic extraction of specific information on cell proliferation and migration in vitro,” Experimental Cell Research, vol. 314, no. 16, pp. 2985–2998, 2008. View at Publisher · View at Google Scholar · View at Scopus