Table of Contents
Journal of Computational Medicine
Volume 2013, Article ID 637901, 9 pages
http://dx.doi.org/10.1155/2013/637901
Research Article

Structure-Based Virtual Screening and Molecular Dynamic Simulation Studies to Identify Novel Cytochrome bc1 Inhibitors as Antimalarial Agents

Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India

Received 18 April 2013; Revised 19 June 2013; Accepted 23 June 2013

Academic Editor: Said Audi

Copyright © 2013 Rahul P. Gangwal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P.-L. Zhao, L. Wang, X.-L. Zhu et al., “Subnanomolar inhibitor of cytochrome bc1 complex designed by optimizing interaction with conformationally flexible residues,” Journal of the American Chemical Society, vol. 132, no. 1, pp. 185–194, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Iwata, J. W. Lee, K. Okada et al., “Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex,” Science, vol. 281, no. 5373, pp. 64–71, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. E. A. Berry, L.-S. Huang, Z. Zhang, and S.-H. Kim, “Structure of the avian mitochondrial cytochrome bc1 complex,” Journal of Bioenergetics and Biomembranes, vol. 31, no. 3, pp. 177–190, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Muller, A. R. Crofts, and D. M. Kramer, “Multiple Q-cycle bypass reactions at the Qo site of the cytochrome bc1 complex,” Biochemistry, vol. 41, no. 25, pp. 7866–7874, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. G. A. Biagini, N. Fisher, N. Berry et al., “Acridinediones: selective and potent inhibitors of the malaria parasite mitochondrial bc1 complex,” Molecular Pharmacology, vol. 73, no. 5, pp. 1347–1355, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. I. K. Srivastava, J. M. Morrlsey, E. Darrouzet, F. Daldal, and A. B. Vaidya, “Resistance mutations reveal the atovaquone-binding domain of cytochrome b in malaria parasites,” Molecular Microbiology, vol. 33, no. 4, pp. 704–711, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Kazanjian, W. Armstrong, P. A. Hossler et al., “Pneumocystis carinii cytochrome b mutations are associated with atovaquone exposure in patients with AIDS,” Journal of Infectious Diseases, vol. 183, no. 5, pp. 819–822, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. D. C. McFadden, S. Tomavo, E. A. Berry, and J. C. Boothroyd, “Characterization of cytochrome b from Toxoplasma gondii and Qo domain mutations as a mechanism of atovaquone-resistance,” Molecular and Biochemical Parasitology, vol. 108, no. 1, pp. 1–12, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. A. R. Crofts, B. Barquera, R. B. Gennis, R. Kuras, M. Guergova-Kuras, and E. A. Berry, “Mechanistic aspects of the Qo-site of the bc1-complex as revealed by mutagenesis studies, and the crystallographic structure,” in The Phototrophic Prokaryotes, G. A. Peschek, W. Loeffelhardt, and G. Schmetterer, Eds., pp. 229–239, Springer, 1999. View at Google Scholar
  10. L. Esser, B. Quinn, Y.-F. Li et al., “Crystallographic studies of quinol oxidation site inhibitors: a modified classification of inhibitors for the cytochrome bc1 complex,” Journal of Molecular Biology, vol. 341, no. 1, pp. 281–302, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Wang, H. Li, L. Wang, W.-C. Yang, J.-W. Wu, and G.-F. Yang, “Design, syntheses, and kinetic evaluation of 3-(phenylamino)oxazolidine-2, 4-diones as potent cytochrome bc1 complex inhibitors,” Bioorganic & Medicinal Chemistry, vol. 19, no. 15, pp. 4608–4615, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. R. P. Gangwal, A. Bhadauriya, M. V. Damre, G. V. Dhoke, and A. T. Sangamwar, “p38 mitogen-activated protein kinase inhibitors: a review on pharmacophore mapping and QSAR Studies,” Current Topics in Medicinal Chemistry, vol. 13, no. 9, pp. 1015–1035, 2013. View at Google Scholar
  13. LigandScout, Version 3. 0, Inte:Ligand GmbH, Clemesn-Maria-Hofbaurer-G, Maria Enzersdorf, Austria, 2010.
  14. Discovery Studio Version 2. 5 (DS 2. 5) User Manual, Accelrys, San Diego, Calif, USA, 2009.
  15. G. V. Dhoke, R. P. Gangwal, and A. T. Sangamwar, “A combined ligand and structure based approach to design potent PPAR-alpha agonists,” Journal of Molecular Structure, vol. 1028, no. 28, pp. 22–30, 2012. View at Google Scholar
  16. T. Rodrigues, R. Moreira, J. Gut et al., “Identification of new antimalarial leads by use of virtual screening against cytochrome bc1,” Bioorganic & Medicinal Chemistry, vol. 19, no. 21, pp. 6302–6308, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Pidathala, R. Amewu, B. Pacorel et al., “Identification, design and biological evaluation of bisaryl quinolones targeting Plasmodium falciparum type II NADH: quinone oxidoreductase (PfNDH2),” Journal of Medicinal Chemistry, vol. 55, no. 5, pp. 1831–1843, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. V. Barton, N. Fisher, G. A. Biagini, S. A. Ward, and P. M. O'Neill, “Inhibiting Plasmodium cytochrome bc1: a complex issue,” Current Opinion in Chemical Biology, vol. 14, no. 4, pp. 440–446, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. J. M. Bueno, P. Manzano, M. C. García et al., “Potent antimalarial 4-pyridones with improved physico-chemical properties,” Bioorganic & Medicinal Chemistry Letters, vol. 21, no. 18, pp. 5214–5218, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Cereto-Massagué, L. Guasch, C. Valls, M. Mulero, G. Pujadas, and S. Garcia-Vallvé, “DecoyFinder: an easy-to-use python GUI application for building target-specific decoy sets,” Bioinformatics, vol. 28, no. 12, pp. 1661–1662, 2012. View at Publisher · View at Google Scholar
  21. U. Singh, R. P. Gangwal, G. V. Dhoke, R. Prajapati, and A. T. Sangamwar, “3D QSAR pharmacophore-based virtual screening and molecular docking studies to identify novel matrix metalloproteinase 12 inhibitors,” Molecular Simulation, vol. 39, no. 5, pp. 385–396, 2012. View at Google Scholar
  22. R. Brenk, A. Schipani, D. James et al., “Lessons learnt from assembling screening libraries for drug discovery for neglected diseases,” ChemMedChem, vol. 3, no. 3, pp. 435–444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. G. R. Bickerton, G. V. Paolini, J. Besnard, S. Muresan, and A. L. Hopkins, “Quantifying the chemical beauty of drugs,” Nature Chemistry, vol. 4, no. 2, pp. 90–98, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. Glide, Version 5. 5, Schrödinger, New York, NY, USA, 2009.
  25. P. S. Ambure, R. P. Gangwal, and A. T. Sangamwar, “3D-QSAR and molecular docking analysis of biphenyl amide derivatives as p38 α mitogen-activated protein kinase inhibitors,” Molecular Diversity, vol. 16, no. 2, pp. 377–388, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. U. Singh, R. P. Gangwal, G. V. Dhoke, R. Prajapati, M. Damre, and A. T. Sangamwar, “3D-QSAR and molecular docking analysis of (4-Piperidinyl)-piperazines as acetyl-CoA carboxylases inhibitors,” Arabian Journal of Chemistry, 2012. View at Publisher · View at Google Scholar
  27. AMBER11, University of California, San Francisco, Calif, USA, 2011.
  28. B. Kuhn and P. A. Kollman, “Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models,” Journal of Medicinal Chemistry, vol. 43, no. 20, pp. 3786–3791, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Bhadauriya, G. Dhoke, R. Gangwal, M. Damre, and A. Sangamwar, “Identification of dual Acetyl-CoA carboxylases 1 and 2 inhibitors by pharmacophore based virtual screening and molecular docking approach,” Molecular Diversity, vol. 17, no. 1, pp. 139–149, 2013. View at Google Scholar
  30. Y. Wang, E. Bolton, S. Dracheva et al., “An overview of the PubChem BioAssay resource,” Nucleic Acids Research, vol. 38, no. 1, pp. D255–D266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. A. B. Wagner, “SciFinder Scholar 2006: an empirical analysis of research topic query processing,” Journal of Chemical Information and Modeling, vol. 46, no. 2, pp. 767–774, 2006. View at Publisher · View at Google Scholar · View at Scopus