Table of Contents
Journal of Computational Methods in Physics
Volume 2013 (2013), Article ID 563480, 13 pages
Research Article

A p-Strategy with a Local Time-Stepping Method in a Discontinuous Galerkin Approach to Solve Electromagnetic Problems

1ONERA, The French Aerospace Lab, 31055 Toulouse, France
2CEA DAM, GRAMAT, 46500 Gramat, France

Received 29 March 2013; Revised 20 June 2013; Accepted 20 June 2013

Academic Editor: Ivan D. Rukhlenko

Copyright © 2013 Benoit Mallet et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We present a local spatial approximation or p-strategy Discontinuous Galerkin method to solve the time-domain Maxwell equations. First, the Discontinuous Galerkin method with a local time-stepping strategy is recalled. Next, in order to increase the efficiency of the method, a local spatial approximation strategy is introduced and studied. While preserving accuracy and by using different spatial approximation orders for each cell, this strategy is very efficient to reduce the computational time and the required memory in numerical simulations using very distorted meshes. Several numerical examples are given to show the interest and the capacity of such method.